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Abstract

As the amount of sequencing efforts and genomic data
volume continue to increase at an accelerated rate, phylo-
genetic analysis provides an evolutionary context for un-
derstanding and interpreting this growing set of complex
data. We introduce a novel quartet based method for in-
ferring molecular based phylogeny called hypercleaning*
(HC*). The HC* method is based on the hypercleaning
(HC) technique [2], which possesses an interesting prop-
erty of recovering edges (of a phylogenetic tree) that are
best supported by the witness quartet set. HC* extends
HC in two regards: i)whereas HC constrains the input
quartet set to be unweighted (binary valued), HC* al-
lows any positive valued quartet scores, enabling more
informative quartets to be defined. ii) HC* employs a
novel collapsing technique which significantly speeds up
the inference stage, making it empirically on par with
quartet puzzling in terms of speed, while still guaran-
teeing optimal edge recovery as in HC. This paper is
primarily aimed at presenting the algorithmic construc-
tion of HC*. We also report some preliminary studies
on an implementation of HC* as a potentially powerful
approximation scheme for maximum likelihood based in-
ference.

Details of mathematical proofs can be found in the tech-
report at (monod.uwaterloo.ca/∼mhu/hyper/hyper.ps).

1 Introduction

Inferring phylogenetic trees on molecular sequences
has wide applications in biology, from analyzing the
evolutionary history of AIDS [8], to detecting regula-
tory elements in genetic sequences [1]. The problem
of phylogenetic inference is considered hard from both
a biological and computational perspective. However
many biologists believe that maximum likelihood (ML)
based methods are the best vehicle for conducting phy-
logenetic analysis [9], [14]. ML methods are, however,
NP hard optimization problems requiring expensive pa-

rameter estimation and topology searching procedures,
and is computationally impractical on large data sets
[3]. To date many approximation methods for ML
based inference have been proposed such as quartet puz-
zling [16], PAUP parsimony [12], and structural EM [5].
We present a novel quartet based method called hyper-
cleaning* (HC*). HC* is based on the quartet method
paradigm [6], [2], [7] and is guaranteed to return the best
supported edges with respect to the quartet witness set.
HC* is computationally efficient and runs with an empir-
ical running time on the order of quartet puzzling [16].
Unlike other heuristic quartet methods such as quartet
puzzling or the Short Quartet method [4], HC* is guar-
anteed to return those edges best supported by the wit-
ness quartet set. This effectively focuses the problem
of phylogenetic inference under the quartet paradigm
onto accurate construction of the witness quartet set (i.e.
phylogenetic analysis on input size four). By using so-
phisticated ML based methods for inferring the witness
quartet set, HC* can serve as an effective method for
approximating ML.

2 Methods & Terminologies

Given an input set S of n sequences (e.g. homologous
gene sequences on n organisms), the task is to infer the
true phylogeny or tree T that captures the evolution-
ary relationship of these n extant leaf sequences. Note
that the leaves of T are labelled by S, and the internal
nodes of T represents speciation events on unobservable,
ancestral objects. One class of phylogenetic inference
methods are the quartet based methods. Most quartet
based methods have two stages: 1) the witness quar-
tet set inference stage and 2) the recombination stage.
Given an input set S of size n, the first stage consists
of inferring all

(

n

4

)

unique quartet topologies called a
witness quartet set, denoted by W . The second recom-
bination stage, takes the inferred quartet topologies in
W (i.e. hypothesis to sub-problems on input size four)
and combine them into a hypothesis tree T ′, estimating
the underlying true tree T . Figure(1) shows the high
level overview of quartet based methods.
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Figure 1: Overview of quartet based methods. First stage takes the input set S, and employs some existing inference
method(s) to construct the witness quartet set W , shown partially. Then the quartet method pieces the information from
W into a hypothesis tree T ′. Note that not all quartets in set W are guaranteed to be compatible with the estimate tree
T ′, as the ones in dashes.

Definition 1 - A Quartet
A quartet q in witness quartet set W , consists of

the pair

(

{a, b, c, d}, {w(ab|cd), w(ac|bd), w(ad|bc) }

)

where a, b, c, d ∈ S and w(ad|bc) ∈ < is the score (or
support) that topology ab|cd is contained in the under-
lying phylogeny T . Note that on some figures and ex-
amples to follow, we limit ourselves to binary quartets,
where on a given quartet all the support falls onto one
topology (with score of 1), and the other topologies have
scores of 0. A quartet topology ab|cd indicates that the
path in T connecting leaves a, b is disjoint from the path
connecting c, d.

The HC* algorithm has two major components: the
edge inference component (HC*E) and the collapsing
component (HC*COLLAPSE). For the remainder of this
section, we introduce the supporting concepts and def-
initions, deferring the actual algorithm until the next
section.

HC* on input set S and its inferred witness quartet
set W , is guaranteed to return the set of edges best
supported by W . We define an edge e, and the distance
(i.e. lack of support) of an edge e by W as follows:

Definition 2 - Edge (bipartition) of a phylogeny
An edge e in an evolutionary tree T is defined by the
bipartition (X,Y ) where X,Y denotes the leaves set of
the two disjoint sub-trees of T resulting from removing
e. Note that X ∪Y = S, and X

⋂

Y = {}. The left part
of Figure(2) illustrates.

Definition 3 - distance function of an edge e
Given an edge e = (X,Y ), its distance or quartet error

with respect to W , is given by

σ(e,W ) =

∑

ab|cd∈W (X,Y )
w(ac | bd) + w(ad | bc)
(

|X|
2

)(

|Y |
2

) (1)

where W (X,Y ) are the topologies of quartet entries in
W induced by the edge e = (X,Y ). The denominator is
the normalizing factor, since note that there are

(

|X|
2

)

(

|Y |
2

)

quartet topologies induced by edge e. Figure (2)
illustrates.

The edge recovery component 1 of HC* , denoted
HC*E , has the following interface:

Best(m,W )←− HC*E(m,W )

whereby HC*E takes in a witness quartet set W on
the input taxa set S, and input parameter m ∈ ℵ and
returns the set of best supported edges Best(m,W ),
defined as follows:

Definition 4- Best supported edge set Best(m,W )
Given input parameter m, and the witness quartet set
W , the set of best supported edges is given by:

Best(m,W ) = {(X,Y ) :: σ((X,Y ),W ) <
2m

| X || Y |
}

(2)
Similar to the HC algorithm, the HC* component for
constructing the set Best(m,W ) has a parameterized
polynomial upper bound of O(n3f(2m)) (see [2] for
proof), where

f(m) = 4m2(1 + 2m)4m (3)

On lower bounded values of m, this yields a poly-
nomial time algorithm. But on practical datasets, the
value of m required such that set Best(m,W ) contains
enough compatible edges for constructing a fully re-
solved tree 2 renders HC computationally intractable.

1This also holds in HC.
2Given the input set S of size n, the necessary condition for HC* to return a fully resolved (unrooted) tree, is that set

Best(m, W ) contains at least n− 3 compatible edges.
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e.g.  given a quartet in  W,  say
q= (  { a,b,c,d  } ,  { w(ab|cd),

            w(ac|bd), w(ad|bc)  }  ) ,
note that only w(ac|bd) in   W(X, Y)
since edge  e  induces the topology

ac|bd

W(X,Y)  is defined to be the set of
all quartet topologies, induced by

the edge e=(X,Y)

Leaves(T) = X U Y

Figure 2: An edge e of an unrooted binary tree T , and the quartet topologies in the witness quartet set W induced by e.

Here we say a set of edges are compatible if they can all
exist in the same binary tree.

The HC* method addresses the aforementioned effi-
ciency problem through the use of a time/memory trade-
off collapsing mechanism, denoted HC*COLLAPSE . In
essence, the collapsing mechanism enables HC* to run
at a low value of m, returning the set Best(m,W ) of
edges. A subset of compatible edges from such a set
will induce an unresolved tree, or a cluster tree. The
collapsing mechanism will then collapse all but one of
the clusters in this unresolved tree. The resulting single
cluster can be viewed as simply a star topology on a set
of leaves and collapsed nodes. Moreover this cluster set
has fewer vertices than the original input set S. We can
then run HC* on this smaller cluster set, and attempt
to resolve edges that lie in that cluster by using a higher
value of m. In other words, we reduce the input size n,
such that we can raise the input parameter m, allowing
more edges to be resolved without accruing the high cost
of added computational time. Figure (3) shows the idea.

The collapsing mechanism guarantees no information
loss during the collapse, such that any edges recovered
by HC∗ under a collapsed cluster, will have the same
score with respect to W as under no collapsing with the
original input set S, by raising the value of m to the
necessary level. This will be formally defined in Prop-
erty 1 later on.

Definition 5 - Cluster Tree
A cluster tree T is a tree consisting of edges and vertices,
where each vertex is either a leaf, an internal vertex (i.e.
non-leaf), or a supernode. Note that a regular tree is a
cluster tree whose vertices are either leaves or internal
vertices. ¯

Definition 6 - Cluster
Given a cluster tree T , a cluster Ci ∈ T is the set of
vertices consisting of exactly one internal vertex, along
with its degree-1 neighboring vertices (i.e. leaves and
supernodes). The leaves of a cluster Ci are denoted

Leaves(Ci), and the supernodes (see following defini-
tion) in Ci are denoted SuperNodes(Ci). Thus we have
Ci = an internal node ∪ SuperNodes(Ci) ∪ Leaves(Ci).
An internal vertex with no adjacent leaves or supernodes
is a trivial cluster. Let Clu(T ) be the set of all clusters
in T . ¯

Definition 7 - Supernode
A supernode c of a cluster tree T , is a degree-1 non-leaf
vertex, denoting some collapsed cluster Ci. ¯

Definition 8 - Cluster Collapse
Given a cluster tree T and cluster Ci ∈ T , the clus-
ter can be collapsed into a single node ci, only if the
resulting node ci is a degree-1 vertex in the remaining
tree. After the collapse, the tree remains a connected
tree, but has one more supernode and one less cluster. ¯

Figure (5) illustrates a valid and an invalid cluster col-
lapse.

Definition 9 - Full Collapse of a tree : Full • (T | Ci)
Given a (cluster) tree T , its full collapse with respect
to cluster Ci, denoted Full • (T | Ci) is the ordering of
all the clusters Cj 6= Ci ∈ Clu(T ), and the subsequent
collapse in turn of these ordered clusters. The ordering
must be valid, in the sense that each cluster, on its turn
to collapse, must be collapsible as in previous definition,
with respect to T . ¯

The result of the sequence of collapses is a single
cluster C∗

i = Ci ∪ {s1, ..., sk}, k <| S |, and the corre-
sponding tree topology on C∗

i is simply the star topology.

Definition 10 - Size and Cardinality of Vertices
Given a vertex s, we define its size recursively as

Size(s) =







1, s is a leaf or intern. vertex
∑

v∈Cs
Size(v) s is a supernode, Cs

is the cluster collapsed to s
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The cardinality of a vertex s, denoted | s | is 1 if
s is a leaf or an internal vertex, and the number of el-
ements in its corresponding cluster if s is a supernode. ¯

The following lemma states that is always possible to
correctly collapse the clusters of a cluster tree until only
one (pre-determined)cluster remains.

Lemma - Generating a valid collapse ordering for
Full • (T | Ci)
Given tree T with k clusters, a valid ordering of the
clusters can be obtained by sorting all clusters 6= Ci

by decreasing distance from Ci, where the dist(C,D)
between two clusters is simply the number of edges be-
tween their closest vertices. Ties in the ordering can be
settled arbitrarily.

proof - Omitted

Definition 11 - Expanding a supernode: exp(s)
Consider a supernode s resulted from collapsing a clus-
ter Cs. The expansion of s, denoted exp(s) is a recursive
procedure, which returns a set of leaves as follows:

exp(s) =

{

Leaves(Cs)
⋃

∀s′∈SuperNode(Cs)

exp(s′)

}

¯

In the context of collapsing, an edge e = (X,Y ) de-
fined by its bipartition of vertices also becomes more
general. In a normal tree T , an edge e = (X,Y ) con-
sists of two disjoint but pairwise complete sets on the
leaves S. In a cluster tree TC , an edge e

′ = (X ′, Y ′)
also consists of two disjoint, pairwise complete sets on
all degree-1 vertices in TC (i.e. leaves and supernodes).

Definition 12 -Expansion of an edge e in a cluster
tree
Given an edge e = (X,Y ) in cluster tree TC , its full
expansion, denoted Exp(e = (X,Y )) returns the edge

e′ = (X ′, Y ′) where X ′, Y ′ is a bipartition on the orig-
inal leaves set S. Formally, the Exp(e = (X,Y )) is
recursively defined as follows:

Exp(e = (X,Y )) = (X ′
, Y

′) =
(

Leaves(X)
⋃

s∈SuperNode(X)

exp(s) ,

Leaves(Y )
⋃

s∈SuperNode(Y )

exp(s)

)

Having the above definitions on a cluster tree, col-
lapsing, and expanding under a cluster tree, we are ready
to formally state the definition of what it means for HC*
to achieve information loss-less collapsing of the cluster
tree into a single cluster, and subsequent resolution of
edges on that cluster.

Property 1 - Information loss-less edge recovering un-
der collapsing
Given input leaves set S and its witness quartet set
W , assume that HC* is at some stage of collapsing
some semi-resolved cluster tree into a star topology
tree, whose leaves are on the cluster set:

C = {l1, l2, ..lk, s1, .., sp} (4)

consisting of leaves and supernodes. We wish to con-
struct the quartet setW ∗ on the vertices of C, such that
running HC* on input C using W ∗, will return the edge
set Best(m,W ∗) with the following accuracy guarantee:

∀ edges e ∈ Best(m,W
∗) :: σ(e,W ∗) = σ(Exp(e),W )

(5)
Such a quartet set W ∗ then satisfies the information
lossless property of the cluster C. ¯

3 Algorithms

The HC* algorithm has two main components, i)
the edge recovery component, denoted HC*E and a col-
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lapsing component HC*COLLAPSE . Figure(6) shows the
high level flow of HC*.

3.1 The HC*E Component

This section describes the algorithmic construction
of the HC*E component. HC*E on input vertex set C of
size n, and integer parameter m produces the edge set
Best(m,W ) which we redefine as follows:

Best(m,W ) = {(X,Y ) | σ(W, (X,Y )) <
2m

Size(X)Size(Y )
}

(6)

Notice that the above definition is a slight modifi-
cation of our earlier definition (2), since in this more
general setting, our input node set C might have a mix
of leaves and supernodes.

The HC*E produces the set Best(m,W ) by first con-
structing for all pairs x, y ∈ C, the set:

Bestxy(m,Wk) =

{

(X,Y ) :: (7)

∑

ax|by∈W (X,Y )

w(ay|bx) + w(ab|xy)

Size(x)Size(y)
< m

}

(8)

where Wk is the subset of W induced by the sequence
of vertices: Sk = {x, y, v1, v2, ..., vk−2} ⊆ C, k < n

and Size(x) as defined in the previous section. The
construction of this set is iterative on k = 1, ..., n. More-
over any trivial edges with either zero or one element in
either of its two partitions belongs to Bestxy(m,Wk),
although trivial edges induces no quartets. Note that
Bestxy(m,W ) = Bestxy(m,Wk) when k = n.

Procedure 1 - Constructing Bestxy(m,Wk) for
k = 1, .., n

If k = 1 then Bestxy{m,Wk} = ∅, since W1 does not
contain any bipartitions.
Else If k = 2, then Bestxy{m,Wk} = {({x}, {y})}.
Else If k ≥ 3, then

Bestxy(m,Wk) = ∀ edges e ∈ Lxy∪Rxy satisfying Eqn (8)

where

Lxy = {(X ∪ {sk}, Y ) | (X,Y ) ∈ Bestxy(Wk−1,m)}

Rxy = {(X,Y ∪ {sk}) | (X,Y ) ∈ Bestxy(Wk−1,m)}

and the vertex {sk} is the kth element drawn from the
sequence
Sk = {x, y, v1, v2, ..., vk−2} ⊆ C. ¯

Theorem 1 - Given input S and W , the set con-
structed under the above procedure, Bestxy(m,Wk), for
k = n, satisfies the definition of Bestxy(m,W ) as given
in Equation (8) .

proof− Omitted

Procedure 2 - Constructing the set Best(m,Wk)

On input set S of n leaves, the set Best(m,Wk), is
defined iteratively from Best(m,Wk−1), for 2 ≤ k ≤ n,
where Best(m,W ) = Best(m,Wn). Wk is the sub-
set of quartets of W induced by the subset of leaves
Sk = {v1, v2, ..., vk} ⊆ S.

If k = 1 then Best(m,W1) = ∅.
If k ≥ 2 then

Best(m,Wk) = ∀ edges e ∈ L∪R∪M satisfying Eqn(6)



HC* ( S : input nodes ,T ∗ : star tree, W : witness set )

OUTPUT: Resolved tree: T

0 k = 0;

1 T k = T ∗;

2 V k = V (T ) = S; W k =W ;

3 WHILE ( T k not fully resolved )

{ Alternatively, we could demand that T k is resolved to some

user specified threshold, and then apply other methods to resolve

the few remaining edges. Some applications might only require that

a subset of edges of the underlying phylogeny be estimated. }

4 FOR some cluster Ci ∈ Clu(T
(k))

5 W k+1, V k+1 ← HC∗
COLLAPSE

(

Full • (T (k) | Ci), V
k,W k

)

6 Best(m,W k+1) = HC∗
E(V

k+1,m,W k+1)

7 T k+1 ← insert compatible edges e ∈ Best(m,W k+1) into T k

8 k = k + 1

9 V k = V (T k)

Figure 6: High level view of the HC* algorithm

where the sets L,R,M are constructed as follows:

L = {(X ∪ {sk}, Y ) :: (X,Y ) ∈ Best(m,Wk−1)}

R = {(X,Y ∪ {sk}) :: (X,Y ) ∈ Best(m,Wk−1)}

M =
⋃

x∈Sk−1

Bestxsk
(m,Wk)

Theorem 2 - Given input S and W , the resulting set
from Procedure 2, Best(m,Wk) for k = n, defines the
set Best(m,W ) as given by Equation (6).

proof - Omitted.

Procedures 1 and 2 in essence describe the iterative
construction of the set Best(m,W ). The efficiency is
that at each stage for 1 ≤ k ≤ n, the cardinality of the
set Best(m,Wk) is inherently constrained by the size of
the sets Best(m,Wk−1) and Bestxy(m,Wk), with the
guarantee that Best(m,W ) does not miss any edges.
This in essence constrains the edge space to be searched
through, whereas the naive search on n leaves involves
searching through 2n edges.

3.2 The HCCOLLAPSE Component

Suppose we run HC* where we have already done k
number of collapses (i.e. the WHILE loop in Figure 6),

resulting in the current cluster tree T
(k)
C , on vertex set

V (k) and the quartet set W (k) on V k. Assume that the
quartet set W k satisfies the loss-less condition. Conse-
quently for any edge e = (X,Y ) on V k, we have:

σ(e = (X,Y ),W k) = σ(Exp(e),W )

where W is the quartet set on the original input set S.
Now HC* will choose a cluster Ci ∈ T k

C and perform
Full • (T k

C | Ci), effectively creating a single cluster.
The following procedure describes how one produces the
witness quartet set W k+1 on the resulting single cluster
V k+1 such that the loss-less condition is preserved.

Procedure 3

W k+1, V k+1 ← HC*COLLAPSE(Full • (T
k
C |Ci), V

k,W k)
Given some unresolved cluster tree T k

C on vertex set V
k

with witness set W k, we wish to collapse all the clusters
of T k

C except Ci. The collapse ordering is defined by
Full • (T k

C | Ci). Without loss of generality, suppose the
collapse ordering is given by:

C1, C2, ..., Ci−1, Ci+1, ..., Cq

The procedure is governed by the aforementioned col-
lapse ordering and can be characterized by a sequence



of corresponding function calls to HC*COLLAPSE :

W
k
(1), V

k
(1) ← HC*COLLAPSE1(V

k
,W

k
, C1)

W
k
(2), V

k
(2) ← HC*COLLAPSE2(V

k
(1),W

k
(1), C2)

. . .

W
k+1

, V
k+1 ← HC*COLLAPSEq (V

k
(q−1),W

k
(q−1), Cq)

The next procedure defines the actual algorithm for:

HC*COLLAPSEj+1(V
k
(j),W

k
(j), Cj+1)

for j = 0, . . . , q − 1. Note that V 0,W 0 corresponds to
the original input vertex set and its quartet set V,W .

Procedure 4

W(j+1), V(j+1) ←HC*COLLAPSE(j+1)

(

V k
(j),W

k
(j), Cj+1

)

Assume we are currently in the k-th iteration of
Full • (TC | Ci), and have performed q cluster collapses
thus far, resulting in vertex sets V(j), and quartet sets
W(j), for j = 0, ..., q− 1. Moreover we assume that W(j)

on V(j) satisfies the information loss-less precondition.
Assume we want to collapse a cluster C 6= Ci ⊆ V(j) into
supernode s, such that we have V(j+1) = V(j) − C + s.
Thus, we construct an updated quartet set W(j+1) on
V(j+1) as follows, to satisfy the loss-less precondition:

Consider the following combinations of quartet:
(a, b, c, d) ∈ V(j+1) = V(j) − C + s, where these ver-
tices do not have to be all distinct 3

C1 (a, b, c, d), where a 6= b 6= c 6= d ∈ V(j+1) − s :
For all such quartets, assign:

w(j+1)(ab | cd) = w(j)(ab | cd)

w(j+1)(ac | bd) = w(j)(ac | bd)

w(j+1)(ad | bc) = w(j)(ad | bc)

C2 (a, a, c, d), where a 6= c 6= d ∈ V(j+1) − s :
For quartets of this form, assign:

w(j+1)(ac | ad) = w(j)(ac | ad)

C3 (a, b, c, c), where a 6= b 6= c ∈ V(j+1) − s :
For quartets of this form, assign:

w(j+1)(ac | bc) = w(j)(ac | bc)

C4 (a, a, b, b), where a 6= b ∈ V(j+1) − s :
For quartets of this form, assign:

w(j+1)(ab | ab) = w(j)(ab | ab)

C5 (a, a, s, s), where a ∈ V(j+1) − s
For these quartets, assign:

w(j+1)(ab | ab) =
∑

c,d∈C

w(j)(ac | ad) +
∑

c∈C

w(j)(ac | ac)

C6 (a, b, c, s), where a 6= b 6= c, a, b, c ∈ V(j+1) − s:
For quartets of this form, assign:

w(j+1)(ab | cs) =
∑

d∈C

w(j)(ab | cd)

w(j+1)(ac | bs) =
∑

d∈C

w(j)(ac | bd)

w(j+1)(bc | as) =
∑

d∈C

w(j)(bc | ad)

C7 (a, b, s, s), where a 6= b ∈ V(j+1) − s
For these quartets, assign:

w(j+1)(as | bs) =
∑

c∈C

w(j)(ac | bc) +

1

2

∑

c,d∈C

(

w(j)(ac | bd) + w(j)(ad | bc)

)

C8 (a, a, b, s), where a 6= b ∈ V(j+1) − s
For these quartets, assign:

w(j+1)(ab | as) =
∑

d∈C

w(j)(ab | ad)

¯

Theorem 3

Given procedures 3 and 4 construction of
HC*COLLAPSE(j+1)

(V k
(j),W

k
(j), Cj+1) on the (j + 1)-

th cluster collapse in the sequence of cluster collapses
as given by Full • (TC | Ci), the resulting quartet set
W(j+1) on the updated vertex set V(j+1) satisfies the in-
formation loss-less precondition. Note this is performed
in the kth iteration of the outer WHILE loop of the HC*
algorithm (see Figure(6)).

proof- Omitted

3Quartets can be of the form (a, a, b, c) since a might be a supernode which semantically represents collapsed leaves and or
other supernodes. As such when we consider the distance score for a quartet topology a, a | b, c, we take into account the following
alternative: a, b | a, c which represents all quartets of the form a1, b | a2, c, where a1, a2 are two collapsed vertices in supernode
a. A quartet of the form (a, a, a, b) is impossible since no supernode can span across an edge.



SSU 30 SSU 30b SSU 50 SSU 50b Euth51 SSU 75
avg accuracy % 65.6/74.5 66.1/70.8 56.6/64.3 46.3/46.4 68.1/77.5 62.8/68.5

p-value 4.722e-004 0.028 4.151e-004 0.454 4.767e-005 9.766e-004

Figure 7: Average accuracy of treepuzzle / HC* and the p value on all sampled trees.

4 Results

We designed an experiment as a preliminary gauge
of the utility of HC* for approximating the Maximum
Likelihood (ML) method under realistic circumstances
(i.e. when our assumptions about the model of evolu-
tion is only partially correct). In particular we compared
HC* with treepuzzle [16] (the original implementation
of the quartet puzzling algorithm, considered by many
to be one of the better ML approximation methods to
date). We generated the input sequence sets using sim-
ulation on known (ML analyzed) tree topologies, The
simulated datasets were generated by first choosing sev-
eral tree topologies with varying branch length compo-
sition, on input leaves sizes: 30, 50, 75. We than gen-
erated sequence datasets by ’evolving’ sequences along
these topologies using the HYK model of evolution with
perturbations to its various parameters. The sequences
were generated using Seq-Gen [11].
For the tree topologies we chose:

• two 30-taxon tree topologies randomly sampled
from the tree of the set of 218 representative
prokaryotic sequences from the RDP database:
denoted SSU 30, SSU 30b.

• two 50-taxon tree topologies randomly sam-
pled from the RDP prokaryotic representa-
tive tree from the RDP database, denoted
SSU 50, SSU 50b, as well as the 51-taxon Euthe-
rian tree, denoted Euth51 from [13].

• one 75-taxon tree, denoted SSU 75, sampled from
the same source tree.

We then simulated sequences along the topology sets
using the HYK model of evolution by perturbing 4 pa-
rameters as follows: i) sequence lengths ( 2000, 4000),
ii)gamma heterogeneity (0.2, 0.5) , iii) branch lengths
scaling factor (1, 4, 10), and iv) transversion/transition
ratio (2, 4), effectively generating 24 sequence sets per
tree topology.4 Using these simulated sequences as in-
put, we ran both treepuzzle [16] and HC* where the
witness quartet set 5 was inferred using fastDNAml
[10]. With both fastDNAml and treepuzzle, we ran the
software on default settings, such that the assumptions
on the model of evolution is ’incorrect’ with respect to
the generated sequences. We then proceed to test the
accuracy and robustness of the inference methods under

such a circumstance when our model of evolution does
not match the actual evolutionary process. Figure 6
shows the average accuracy (given as the percentage of
edges shared with the true underlying tree), and the p-
value for testing the statistical significance of accepting
the null hypothesis (that the accuracy datapoints on
treepuzzle and HC* came from the same distribution).
This was performed using the Wilcoxon paired-sample
test (i.e. non-parametric paired t-test) in MATLAB.
From table(7) we see that HC* outperforms treepuz-
zle, in a statistically significant way, on all sequences
except those on topology SSU 50b. This preliminary
study shows that HC* tends to be more robust than
treepuzzle on inferring phylogenies when the assump-
tions on the model of evolution are broken, although
more detailed studies need to be conducted to deter-
mine the effect of the various parameters on the model
of evolution and their effects on the performance of HC*.

On average HC* runs on the order of 2 times slower
than treepuzzle, although most (90%+) of the CPU time
was spent on inferring the witness quartet set through
time-consuming process calls to fastDNAml. Currently
we are adopting fastDNAml (as well as other ML tech-
niques) directly into the HC* source code, which should
significantly speed up the run time of HC*. This en-
ables HC* to be practical on larger datasets (input set
n > 100). Moreover the witness quartet set lends itself
naturally to be parallel computed should the need arise.

5 Conclusion & Future Work

This paper describes the HC* method as an efficient
method for recovery phylogenetic tree edges best sup-
ported by the witness quartet set. The HC* method
makes interesting accuracy guarantees on the edges re-
covered with respect to the witness quartet set. This
focuses a larger phylogenetic inference problem into nu-
merous, smaller subproblems on input size four. As
more sophisticated and powerful ML methods arise on
learning models of evolution from sequences (given fixed
topologies or on small topology search spaces) [17], [14],
the accuracy on inferring quartet topologies will continue
to improve. Thus HC* becomes a potentially powerful
technique for approximing ML based phylogenetic tree

4On the 75 taxon tree we simulated only 16 sequences, by omitting values 4 on branch scaling parameter due to heavy
computations.

5The quartets were unweighted, where a score of 1 was assigned to the highest scoring topology and 0 to the two alternative
topologies on a given quartet.



inference.

Due to the efficient and optimal nature of HC*, one
area of further investigation would be using HC* to eval-
uate the effectiveness of weighted quartet methods. This
stems of the motivation that some early studies [15]
suggests that unweighted quartet methods display poor
scalability properties. In particular, it would be interest-
ing to combine sophisticated inference techniques such as
in [14] for inferring quartet topologies along with various
schemes for constructing weighted quartets (e.g. ensem-
ble learning) to further probe the scalability properties
of weighted quartet methods using HC* as a baseline
study.
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