
Picking Fruit from the Tree of Life

Comments on Taxonomic Sampling and Quartet Methods

Jonathan H. Badger
Bioinformatics Research Group

Department of Computer Science
University of Waterloo

Waterloo, Ontario, Canada

jhbadger@math.uwaterloo.ca

Paul Kearney
Bioinformatics Research Group

Department of Computer Science
University of Waterloo

Waterloo, Ontario, Canada

pkearney@math.uwaterloo.ca

Keywords
Taxonomic Sampling, Phylogenetics, Quartet Methods.

ABSTRACT
A topic of recent interest and controversy in the field of system-
atic biology is the value of “taxonomic sampling”, the practice of
adding additional sequences (taxa) to an analysis to improve the
accuracy of the inferred evolutionary tree. In terms of tree infer-
ence algorithms that construct trees from four taxa subtrees (quar-
tet topologies), the value of taxonomic sampling can be rephrased
as the question “are quartet topologies more accurately estimated
when embedded within a larger set of taxa?”. Here we show that
the answer to this question is negative, based on an analysis of nine
40 taxa trees with varying amounts of sequence divergence sampled
from the Ribosomal Database Project. This result complements and
contrasts previous research that examined the effects of taxonomic
sampling on a single pathological quartet topology using artificially
generated data. Our result is based on an experimental study us-
ing real data and examines the effect of taxonomic sampling on all
quartet topologies induced by an evolutionary tree.

1. INTRODUCTION
Large DNA sequence datasets available for evolutionary analyses
have been generated in recent years through the use of DNA se-
quencing technology. Examples of such datasets are the Riboso-
mal Database Project’s [13] prokaryotic and eukaryotic datasets
and the Green Plant Phylogeny [2] dataset which include thousands
of gene sequences. A critical component of evolutionary analyses
of these datasets is the confident estimation of the evolutionary his-
tory of the sequences. Such histories are typically modeled by evo-
lutionary trees. The accurate estimation of evolutionary trees is a
challenging biological and computational problem. The biological
challenges are numerous and include the fact that our current un-
derstanding of evolutionary processes, especially during the early
stages of life on earth, is far from adequate. The computational
challenges arise from the fact that the number of possible evolu-

tionary trees on a given set of sequences is exponential in the num-
ber of sequences and for most objective functions that evaluate a
given evolutionary tree hypothesis, the problem of finding an evo-
lutionary tree that maximizes the objective function is intractable.

Many methods for estimating evolutionary trees have been pro-
posed. These include maximum parsimony [7], maximum likeli-
hood [6], distance methods such as neighbor joining [15] and quar-
tet methods [17, 1, 4, 3]. In this paper we examine the performance
of quartet methods in the context of taxonomic sampling.

1.1 Quartet Methods and Taxonomic Sampling
The topology of an evolutionary tree is uniquely defined by its set
of quartet topologies. LetS be the set of sequences labeling the
leaves of an evolutionary treeT . A quartet of S is a set of four
sequences taken fromS, or equivalently, four leaves taken fromT .
A quartet topology is an evolutionary tree on four sequences and
can take one of the four forms depicted in figure 1.

q={a,b,c,d}
a

b

c

d
ab|cd

a

c

b

d
ac|bd

a

d

b

c
ad|bc

a

b
{abcd}

c

d

Figure 1: The four possible quartet topologies. We use the no-
tation ab

�
cd to to denote the quartet topology where sequences

a and b are separated from sequences c and d as depicted in the
leftmost quartet topology.

We letQT denote the set of quartet topologies induced by the evo-
lutionary treeT . SinceQT defines the topology ofT , a reasonable
approach to estimating the topology ofT from sequence data is the
following two step approach:

1. EstimateQT by generating a setQ of quartet topologies in-
ferred from the sequence data using a method such as maxi-
mum likelihood, maximum parsimony or neighbor joining.

2. Recombine quartet topologies inQ (like pieces of a puzzle)
to form an estimate of the unknown evolutionary treeT .

For example, quartet puzzling [17] uses maximum likelihood to
generateQ and then recombines these quartet topologies using a
greedy iterative algorithm. When recombining quartet topologies
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mostquartetmethodstry to realizeasmany quartettopologiesin Q
aspossibleby obtaininga treeT � that maximizesthe intersection
of QT � andQ.

Themotivation for thequartetmethodis that,althoughlargeevo-
lutionary treescannotbe estimateddirectly using computational
intensemethodssuchasmaximumlikelihoodandmaximumparsi-
mony, thesemethodscanbeusedto estimateall quartettopologies.
That is, even if the entire evolutionary treecannotbe estimated,
piecesof theevolutionarytreecanbe.

Critical to thefeasibilityof thequartetmethodis thatquartettopolo-
giescanbeestimatedaccurately. Thisis intimatelyconnectedto the
conceptof taxonomicsampling.HendyandPenny [10] introduced
the ideathataddingtaxa(in our casesequences)to thedatasetso
that long branchesof the evolutionarytreeareshortenedmay in-
creasethe accuracy of the resultingestimate.A controversysur-
roundingtaxonomicsamplingbeganwhenHillis [11], motivated
by anecdotalevidence,stated:

Including large numbers of taxa in an analysis may be
the best way to ensure phylogenetic accuracy.

This resultedin many paperspresentingresearchvalidating,criti-
cizing or clarifying Hillis’ statement(e.g. [12, 8, 14,16]). Return-
ing to thequartetmethod,therelevantquestionis:

Are quartet topologies more accurately estimated when
embedded within a larger set of taxa?

That is, canthequartettopologyfor a givenquartetbemoreaccu-
rately inferredby first estimatingan evolutionarytreefor a larger
datasetthat includesthe quartet(“supersamplethe quartet”) and
then extracting the quartettopology from this evolutionary tree.
We addressthe above questionin this paperusingan experimen-
tal studybasedon theRibosomalDatabaseProject[13].

1.2 Previous Work
Previousrelatedwork hasfocusedontheeffectsof taxonomicsam-
pling on a “Felsensteinzone”quartettopology(see[5]). TheFel-
sensteinzoneis anareaof theparameterspacewhereamethodwill
convergeuponthewrongtopologyastheamountof sequencedata
increases.Wedescribethis work in moredetail.

Graybeal[8] usedasimulationstudytoexaminetheeffectof adding
more taxa to a Felsensteinzonequartettopology. In her study,
Graybealinsertedmoreandmoretaxainto thequartettopologyat
prespecifiedlocationsandthenevolvedartificial sequenceson the
resultingevolutionary tree accordingto the Kimura 2 parameter
modelwith ratevariationamongsites.Shethenappliedmaximum
parsimony, andin somecasesmaximumlikelihood,to theresulting
sequencesandassessedthe accuracy of the quartettopology. She
foundthatasthenumberof taxais increasedwhile theamountof
sequencedataremainsconstant,theaccuracy of thequartettopol-
ogy increases.However, if the numberof taxa is increasedtoo
much,accuracy begins to decline.Graybealhypothesizedthat the
eventuallossof accuracy wasdueto thefactthattheamountof se-
quencedatawaskeptconstant,andso,asthenumberof taxais in-
creasedit is expectedthatoverall accuracy will naturallydecrease
dueto low sequenceto taxaratios. Although the study indicated

that therewasan advantageto supersamplinga quartettopology
whenusingmaximumparsimony, thestudydid not indicateanad-
vantagewhenusingmaximumlikelihood.

SmithandWarnow [16] alsoutilizedasimulationstudythatexam-
ined the effectsof addingmoretaxato a Felsensteinzonequartet
topology. However, in their studythey examinedmaximumparsi-
mony and neighborjoining and usedthe Jukes Cantormodel of
evolution to artificially evolve sequenceson a variety of model
trees. The authorsfound that maximumparsimony andneighbor
joining canboth benefitfrom supersamplingthe quartettopology
when sequencelength is sufficiently long. The authorsalso ob-
served instanceswhereaccuracy wasdecreasedby supersampling
andthey hypothesizedthat this couldbe theresultof new Felsen-
steinzonequartettopologiesbeingcreatedby theadditionof new
taxa.

Hillis observed thatquartettopologiescanbe difficult to estimate
when evolutionary ratesare high [11]. In contrastto the above
two simulationstudies,Hillis offeredanecdotalevidenceindicating
thatsupersamplingquartettopologiescanimproveaccuracy. Hillis
evolved sequencesusingtheKimura 2 parametermodelof evolu-
tion with ratevarianceandahighrateof evolution. Hillis observed
that almostall quartettopologiesacrossa particularedgeof the
model treeare incorrectlyestimatedby maximumparsimony but
that maximumparsimony canbe usedto correctlyestimatethese
quartettopologieswhensupersampled.

Theabove researchsuggeststhatsupersamplingaquartettopology
increasesaccuracy. However, this conclusionmustbetemperedby
thefollowing observations:

� The above researchfocuseson the effect of supersampling
a Felsensteinzonequartettopology. Suchquartettopolo-
giesarenot representative of theentiredistribution of quar-
tet topologiesinducedby anevolutionarytree.Fromtheper-
spective of the quartetmethodit is essentialto understand
how all quartettopologiesinducedby an evolutionary tree
areaffectedby taxonomicsampling. We observe that Fel-
sensteinzonequartettopologiesaredifficult to estimateto
begin with, andso, increasedaccuracy by supersamplingis
not surprising.

� It is not clearhow muchthe observed effectsof supersam-
plingaretheresultof thechosenmethodof estimation.Gray-
beal, Smith and Warnow, and Hillis all observe improved
accuracy when using maximum parsimony. Graybealex-
aminedmaximumlikelihoodwhichyieldedno improvement
dueto supersampling.However, Graybealacknowledgethat
maximumlikelihoodperfectlymatchedtheKimura2 param-
etermodelof evolution usedin hersimulationstudy. In this
sensethe simulationstudywasnot a reasonableevaluation
of maximumlikelihood. Smith andWarnow examinedthe
effectsof supersamplingwhenusingneighborjoining. How-
ever, they usedtheJukesCantormodelof evolution without
ratevarianceon which neighborjoining is known to becon-
sistent.

� TheGraybealstudysupersampleda quartettopologyby in-
sertingnew taxaat prespecifiedlocations. In practicea bi-
ologistdoesnot have theoptionof selectinginsertionpoints
for taxaonalongbranchin thetree,nordoesabiologisteven
know a priori which taxawould inserton a long branch.In
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contrast,Smith andWarnow begin with a model tree from
which a supersampleof the quartettopology in questionis
selected.SmithandWarnow useartificially generatedtrees
with uniform branchlengthsalong with a single 35 taxon
sampledfrom the rbcL dataset. Hillis examineda single
branchof a singletree.Of thethreestudies,SmithandWar-
now usethe mostrobust setof modeltreesyet it is unclear
how the chosenuniform branchlengthsmight affect their
conclusions.

2. METHODOLOGY
Theexperimentalstudypresentedhereexaminesthesimultaneous
effect of supersamplingquartettopologiesover all quartetsof a
given dataset. In the study various methodsare usedincluding
maximumparsimony, quartetpuzzlingandneighborjoining (maxi-
mumlikelihoodtrialsarestill in progress).Thedatasets(sequences
andassociatedevolutionary trees)areextractedfrom the Riboso-
mal DatabaseProject(RDP)[13] andrepresentsequencesetswith
variousdegreesof divergence.

Our experimentalstudy is designedto addressthe issuesnot ad-
dressedby previouswork:

� Weexaminetheeffectof supersamplingonall quartettopolo-
gies inducedby an evolutionary tree, not just Felsenstein
zonetopologies.This is necessaryin orderto accesstheim-
pactof taxonomicsamplingonquartetmethodsaswell asto
accesstheeffectsof taxonomicsamplingon quartettopolo-
giesin general.

� A broadrangeof methodsareusedto determinetherelative
impactof taxonomicsamplingonquartetmethods.

� Insteadof generatingartificial sequenceson artificial evolu-
tionary treeswe have chosento usereal sequencesandreal
evolutionarytrees1. This allows usto avoid someof thepit-
falls of simulationstudiessuchassimplisticmodelsof evo-
lution andcladogenesisandperhapsmakesthe conclusions
morepracticallyrelevant.

In all, we extractednine treesof 40 taxaeachfrom the RDP 16S
rRNA tree. In order to determinewhat effect different levels of
sequencedivergencehave on supersampling,threetreeswereex-
tractedfrom eachof threedivergencelevels(shallow, medium,and
deep).Thedetailsof theextractedtreesarefoundbelow. 1000ran-
domquartetsfrom eachtree,uniformly distributedacrosstheedges
of thetreewerechosenfor tracking.Thiswasnecessaryin orderto
makecomputationtimefeasible.For eachquartet,10supersamples
of 5, 10,15,20,and30sequenceswereanalyzedby maximumpar-
simony, neighborjoining andquartetpuzzlingusingtheRDP16S
rRNA alignment.Thesesupersampleswerecreatedby addingran-
domly chosentaxafrom the40 taxatreeto thequartetto obtaina
treewith thedesirednumberof taxa.Additionally thequartetitself
andthecomplete40 taxatreewerealsoestimatedby themethods.
For eachsetof tentreesthefollowing statisticswerecomputed:

� Quartet Accuracy: This statisticis thepercentageof times
that the RDP quartetbeingsupersampledwascorrectly in-
ferredin thetreessupersampledfrom it.

1TheRDPevolutionarytreesusedarethemselvesestimates.How-
ever, theRDPis acarefullyassembledandmaintainedevolutionary
treewith somelevel of confidence.

� ConsensusAccuracy: For eachset of supersamples,the
consensus(majority) versionof the quartetcontainingthe
speciesfrom theRDPquartetwascomputed.Thepercentage
of timesin which theanalogousquartetfrom eachof thesu-
persampledtreesagreeswith theconsensusquartetis termed
“consensusaccuracy”. This statisticprovidesa measureof
consistency independentof theRDPtree.

� TreeAccuracy: This statisticis the percentageof edgesin
thesupersampledtreesthatwerecorrectlyinferredin regard
to theRDP.

The40taxatreeswererandomlysampledfrommonophyleticgroups
of the RDPtree. To avoid unreasonablyshortbranches,only one
strainper specieswasconsideredfor inclusion. The basisof the
treeswere the following groups: shallow tree#1 (EntericBacte-
ria), mediumtree#1 (Cyanobacteria),deeptree#1 (Archaea+ Eu-
bacteria),shallow tree#2 (Pseudomonas),mediumtree#2 (Meth-
anogenicArchaea),deeptree#2 (Archaea+ Eubacteria),shallow
tree#3 (Arthrobacter),mediumtree#3 (Lactobacilli),deeptree#3
(Archaea+ Eubacteria).Table1 presentsa summaryof thebranch
lengthsof thesetrees,andsupportsourassertionthatour treesrep-
resenta broadrangeof sequencedivergence.

Thephylogeneticmethodsusedin theanalysiswerethefollowing:
neighbor-joining [15] as implementedin PAUP* 4.0b4a[18], us-
ing maximumlikelihoodderiveddistancesbasedontheHasegawa-
Kishino-Yano(HKY) modelof evolution [9], heuristicmaximum
parsimony [7] alsoasimplementedin PAUP* 4.0b4a,andfinally
quartetpuzzling[17], onmaximumlikelihoodinferredquartets,as
implementedin PUZZLE 4.0.2.

3. RESULTS AND CONCLUSIONS
Thefollowing graphspresentour results.In eachgraph,thex-axis
presentsthe supersamplesizesand the y-axis representsthe per-
centaccuracy. Figures2 through4 depictthe how supersampling
affectedthe accuracy of the tracked quartetsas comparedto the
RDPquartettopology, while figures5 through7 depicthow super-
samplingaffectedthe consensusaccuracy of the tracked quartets.
Finally, figures8 through10 depicthow edgeaccuracy is affected
aslargerandlargerdatasetsareanalyzed.
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Table1: Summary of the branch lengthsof the sampledtr ees
1S 1M 1D 2S 2M 2D 3S 3M 3D

Min. 0.0 0.0025 0.0020 0.0001 0.0 0.0033 0.0 0.0005 0.0028
Max. 0.0361 0.0743 0.5231 0.1088 0.1010 0.8893 0.0288 0.0859 0.7504
Ave. 0.0032 0.0101 0.0521 0.0055 0.0094 0.0697 0.0035 0.0064 0.0630
Std.Dev. 0.0059 0.0170 0.1195 0.0156 0.0181 0.1359 0.0060 0.0129 0.1257

(1Smeansshallow tree#1,1M meansmediumtree#1,etc.)

Figure2: Quartet Accuracy – Neighbor Joining
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Figure3: Quartet Accuracy – Maximum Parsimony
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Figure4: Quartet Accuracy – Quartet Puzzling
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Figure5: ConsensusAccuracy – Neighbor Joining
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Figure6: ConsensusAccuracy – Maximum Parsimony
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Figure7: ConsensusAccuracy – Quartet Puzzling
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Figure8: TreeAccuracy – Neighbor Joining
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Figure 9: TreeAccuracy – Maximum Parsimony
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Figure10: TreeAccuracy – Quartet Puzzling

20

30

40

50

60

70

80

90

100

5 10 15 20 25 30 35 40

  1S
1M
1D

2S
2M
2D

3S
3M
3D

Theresultsof theexperimentalstudystronglysupporttheconclu-
sion that supersamplingdoesnot increasequartettopologyaccu-
racy. This conclusionis independentof methodand of dataset.
Theaverageincreasein accuracy affordedby supersamplingis less
than2.5%for neighborjoining, lessthan1.2%for maximumpar-
simony and0% for quartetpuzzling. Furthermore,in many cases
supersamplingresultedin a decreasein accuracy. The consensus
accuracy, which is independentof theRDPtree,alsosupportsthis
conclusionasa similardecreasein accuracy is alsoobserved. This
resultdoesnot necessarilycontradicttheconclusionsof Graybeal,
SmithandWarnow, andHillis astheir conclusionswerebasedon
examiningtheeffect of taxonomicsamplingon a singlepathologi-
cal quartettopology. Our resultsindicatethatthebeneficialeffects
of taxonomicsamplingoncollectionsof quartettopologiesis min-
imal. The reasonfor this is not entirely clear. Onepossibility is
that the numberof pathologicalquartettopologiesin a datasetis
small. Anotherpossibility is that supersamplingintroducesaddi-
tional pathologicalquartettopologiestherebynegatingany benefit
of addingadditionaltaxa.

The resultsof the experimentalstudyalsosupportthe conclusion
thatsmallerdatasetsaremoreaccuratelyestimatedthanlargerda-
tasets.This is trueregardlessof inferencemethod.In fact, there-
ductionin edgeaccuracy canbedramatic,for example,maximum
parsimony andneighborjoining on the 2S datasetandmaximum
parsimony on the 1M dataset.This is consistentwith the conclu-
sionsof theSmithandWarnow simulationstudy. Thesurprisingly

poorperformanceof quartetpuzzlingin our study(sometimesgo-
ing below the33%accuracy expectedby chancealone)canbeex-
plainedby thefactthatthetreesobtainedby this methodareoften
highly unresolved. Theedgesthatareresolved,however, aregen-
erally quiteaccurate.

We concludethat althoughcertain(pathological)quartettopolo-
giesmaybenefitfrom supersampling,thereis no evidenceto sug-
gestthat a collection of quartettopologiesdrawn from the same
datasetwill benefitcollectively from supersampling.The impli-
cationof this for quartetmethodsis thatsupersamplingcannotbe
usedto amplify the accuracy of a set of quartettopologies. Al-
thoughwe took efforts to samplebroadlyfrom theRDP, onemust
becautiousin extendingtheresultsof this studyto otherdatasets.
16SrRNA is a highly conserved molecule,andit is possiblethat
the typesof pathologicalquartetsthatsupersamplingis thoughtto
eliminatearerarein this data.Futurework shouldincludestudies
of othermolecules,suchastheproteinrbcL. Additionally, investi-
gatingotherphylogeneticmethods,in particularmaximumlikeli-
hood,to seeif they tooareimmuneto thebenefitsof supersampling
would provide additionalpracticalknowledgeto biologists.
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