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ABSTRACT lutionary tree that maximizes the objective function is intractable.

A topic of recent interest and controversy in the field of system-
atic biology is the value of “taxonomic sampling”, the practice of
adding additional sequences (taxa) to an analysis to improve the
accuracy of the inferred evolutionary tree. In terms of tree infer-
ence algorithms that construct trees from four taxa subtrees (quar-
tet topologies), the value of taxonomic sampling can be rephrased

as the question “are quartet topologies more accurately estimated . .
when embedded within a larger set of taxa?”. Here we show that 11 Quartet Methods and Taxonomic Sampllng

the answer to this question is negative, based on an analysis of nine! "€ topology of an evolutionary tree is uniquely defined by its set
40 taxa trees with varying amounts of sequence divergence sampled®f quartet topologies. Le$ be the set of sequences labeling the
from the Ribosomal Database Project. This result complements andleaves of an evolutionary treB. A quartet of Sis a set of four
contrasts previous research that examined the effects of taxonomicS€quences taken frof or equivalently, four leaves taken from
sampling on a single pathological quartet topology using artificially A quartet topology is an evolutionary tree on four sequences and
generated data. Our result is based on an experimental study us¢an take one of the four forms depicted in figure 1.

ing real data and examines the effect of taxonomic sampling on all

Many methods for estimating evolutionary trees have been pro-
posed. These include maximum parsimony [7], maximum likeli-
hood [6], distance methods such as neighbor joining [15] and quar-
tet methods [17, 1, 4, 3]. In this paper we examine the performance
of quartet methods in the context of taxonomic sampling.

quartet topologies induced by an evolutionary tree. g={a,b,c,d}

c b b c
1. INTRODUCTION a4 <o <
Large DNA sequence datasets available for evolutionary analyses ablcd ac|bd ad|bc {abcd}

have been generated in recent years through the use of DNA se-

quencing technology. Examples of such datasets are the Ribosorjgyre 1: The four possible quartet topologies. We use the no-
mal Database Project’s [13] prokaryotic and eukaryotic datasets 4iqn ablcd to to denote the quartet topology where sequences

and the Green Plant Phylogeny [2] dataset which include thousands, gnd b are separated from sequences ¢ and d as depicted in the
of gene sequences. A critical component of evolutionary analyses ofimost quartet topology.

of these datasets is the confident estimation of the evolutionary his-
tory of the sequences. Such histories are typically modeled by evo-yyq letQr denote the set of quartet topologies induced by the evo-

lutionary trees. The accurate estimation of evolutionary trees is alutionary treeT. SinceQr defines the topology of , a reasonable

challenging biological and computational problem. The biological approach to estimating the topologyBfrom sequence data is the
challenges are numerous and include the fact that our current ”n'following two step approach:

derstanding of evolutionary processes, especially during the early

stages of life on earth, is far from adequate. The computational

challenges arise from the fact that the number of possible evolu- 1. EstimateQr by generating a sé of quartet topologies in-

ferred from the sequence data using a method such as maxi-

Permission to make digital or hard copies of part or all of this work or mum likelihood, maximum parsimony or neighbor joining.
persona or classroom use is granted without fee provided that copies are . . . .
not made or distributed for profit or commercia advantage and that copies 2. Recombine qgartet topologies@n(like pieces of a puzzle)
bear this notice and thefull citaion on thefirst page. To copy otherwise, to to form an estimate of the unknown evolutionary tifee
republish, to post on servers, or to redistribute to lists, requires prior
specific permission and/or afee.
SAC 2001, Las Vegas, NV For example, quartet puzzling [17] uses maximum likelihood to

© 2001 ACM 1-58113-287-5/01/02...$5.00 generateQ and then recombines these quartet topologies using a
greedy iterative algorithm. When recombining quartet topologies
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mostquartetmethoddry to realizeasmary quartetopologiesn Q
aspossibleby obtainingatree T’ that maximizesthe intersection
of Q' andQ.

The motivation for the quartetmethodis that, althoughlarge evo-

lutionary treescannotbe estimateddirectly using computational
intensemethodssuchasmaximumlik elihoodandmaximumparsi-
mory, thesemethodscanbeusedto estimateall quartettopologies.
Thatis, evenif the entire evolutionary tree cannotbe estimated,
piecesof the evolutionarytreecanbe.

Critical to thefeasibility of thequartetmethods thatquartetopolo-
giescanbeestimatedccurately Thisis intimatelyconnectedo the
concepbf taxonomicsampling.HendyandPenry [10] introduced
theideathataddingtaxa(in our casesequencedp the dataseso
thatlong branchesf the evolutionarytree are shortenednay in-

creasethe accurag of the resultingestimate. A controversy sur

roundingtaxonomicsamplingbegan when Hillis [11], motivated
by anecdotakvidence stated:

Including large numbers of taxa in an analysis may be
the best way to ensure phyl ogenetic accuracy.

This resultedin mary paperspresentingesearchvalidating, criti-
cizing or clarifying Hillis’ statemente.g.[12, 8, 14, 16]). Return-
ing to the quartetmethod therelevantquestionis:

Arequartet topol ogies more accurately estimated when
embedded within a larger set of taxa?

Thatis, canthe quartettopologyfor a given quartetbe moreaccu-
rately inferred by first estimatingan evolutionarytreefor a larger
datasetthat includesthe quartet(“supersamplehe quartet”) and
then extracting the quartettopology from this evolutionary tree.
We addresghe above questionin this paperusingan experimen-
tal studybasedn the RibosomabDatabasdroject[13].

1.2 Previous Work

Previousrelatedwork hasfocusedon theeffectsof taxonomicsam-
pling on a “Felsensteirzone” quartettopology(see[5]). TheFel-
sensteirzoneis anareaof theparametespacevhereamethodwill
corverge uponthewrongtopologyasthe amountof sequencelata
increasesWe describethis work in moredetail.

Graybea[8] usedasimulationstudyto examinetheeffectof adding
more taxato a Felsensteirzone quartettopology In her study
Graybealinsertedmoreandmoretaxainto the quartettopologyat
prespecifiedocationsandthenevolved artificial sequencesn the
resulting evolutionary tree accordingto the Kimura 2 parameter
modelwith ratevariationamongsites.Shethenappliedmaximum
parsimory, andin somecasesnaximumlik elihood,to theresulting
sequenceandassessethe accuray of the quartettopology She
foundthatasthe numberof taxais increasedvhile the amountof
sequencelataremainsconstantthe accurayg of the quartettopol-
ogy increases.However, if the numberof taxais increasedoo
much,accurag beginsto decline. Graybealhypothesizedhatthe
eventuallossof accurag wasdueto thefactthattheamountof se-
guenceadatawaskeptconstantandso, asthe numberof taxais in-
creasedt is expectedthat overall accurag will naturallydecrease
dueto low sequencéo taxaratios. Although the studyindicated

that therewas an adwantageto supersampling quartettopology
whenusingmaximumparsimory, the studydid not indicateanad-
vantagevhenusingmaximumlik elihood.

SmithandWarnaw [16] alsoutilized a simulationstudythatexam-
ined the effectsof addingmoretaxato a Felsensteirzonequartet
topology However, in their studythey examinedmaximumparsi-
mory and neighborjoining and usedthe Jukes Cantor model of
evolution to artificially evolve sequence®n a variety of model
trees. The authorsfound that maximumparsimory and neighbor
joining canboth benefitfrom supersamplinghe quartettopology
when sequencdengthis suficiently long. The authorsalso ob-
senedinstancesvhereaccurag wasdecreasedthy supersampling
andthey hypothesizedhatthis could be theresultof new Felsen-
steinzonequartettopologiesbeingcreatedby the additionof new
taxa.

Hillis obsered thatquartettopologiescanbe difficult to estimate
when evolutionary ratesare high [11]. In contrastto the above
two simulationstudiesHillis offeredanecdotaévidenceindicating
thatsupersamplinguartettopologiescanimprove accuray. Hillis
evolved sequencessingthe Kimura 2 parametemodelof evolu-
tion with ratevarianceanda high rateof evolution. Hillis obsered
that almostall quartettopologiesacrossa particularedgeof the
modeltree areincorrectly estimatedoy maximumparsimory but
that maximumparsimory canbe usedto correctly estimatethese
quartettopologieswvhensupersampled.

Theabove researclsuggestshatsupersampling quartettopology
increasesccurayg. However, this conclusiormustbetemperedy
thefollowing obsenations:

e The above researcHocuseson the effect of supersampling
a Felsensteirzone quartettopology Suchquartettopolo-
giesarenot representate of the entiredistribution of quar
tettopologiesnducedby anevolutionarytree.Fromtheper
spectve of the quartetmethodit is essentiato understand
how all quartettopologiesinducedby an evolutionary tree
are affectedby taxonomicsampling. We obsere that Fel-
sensteirzone quartettopologiesare difficult to estimateto
begin with, andso, increasedaccurag by supersamplings
notsurprising.

e It is not clearhow muchthe obsered effects of supersam-
pling aretheresultof thechosermethodof estimation Gray-
beal, Smith and Warnaw, and Hillis all obsere improved
accuray when using maximum parsimory. Graybealex-
aminedmaximumlik elihoodwhichyieldednoimprovement
dueto supersamplingHowever, Graybealacknavledgethat
maximumlik elihoodperfectlymatchedheKimura 2 param-
etermodelof evolution usedin hersimulationstudy In this
sensethe simulationstudywas not a reasonablevaluation
of maximumlikelihood. Smith and Warnav examinedthe
effectsof supersamplingvhenusingneighborjoining. How-
ever, they usedthe JukesCantormodelof evolution without
ratevarianceon which neighborjoining is known to be con-
sistent.

e The Graybealstudysupersampled quartettopology by in-
sertingnew taxaat prespecifiedocations. In practicea bi-
ologistdoesnot have the option of selectinginsertionpoints
for taxaonalongbranchin thetree,nordoesabiologisteven
know a priori which taxawould inserton along branch.In



contrast,Smith and Warnav begin with a modeltree from
which a supersamplef the quartettopologyin questionis
selected.SmithandWarnawv useartificially generatedrees
with uniform branchlengthsalong with a single 35 taxon
sampledfrom the rbcL dataset. Hillis examineda single
branchof a singletree. Of the threestudies SmithandWar
now usethe mostrobust setof modeltreesyetit is unclear
how the chosenuniform branchlengthsmight affect their
conclusions.

2. METHODOLOGY

The experimentalstudy presentedhereexaminesthe simultaneous
effect of supersamplingjuartettopologiesover all quartetsof a
given dataset. In the study various methodsare usedincluding
maximumparsimor, quartetpuzzlingandneighboijoining (maxi-
mumlik elihoodtrialsarestill in progress) Thedataset¢sequences
andassociateavolutionary trees)are extractedfrom the Riboso-
mal Databasé’roject(RDP)[13] andrepresensequencsetswith
variousdegreesof divergence.

Our experimentalstudy is designedo addresghe issuesnot ad-
dressedy previouswork:

¢ Weexaminetheeffectof supersamplingnall quartetopolo-
giesinducedby an evolutionary tree, not just Felsenstein
zonetopologies.Thisis necessaryn orderto accessheim-
pactof taxonomicsamplingon quartetmethodsaswell asto
accesghe effects of taxonomicsamplingon quartettopolo-
giesin general.

A broadrangeof methodsareusedto determinethe relative
impactof taxonomicsamplingon quartetmethods.

Insteadof generatingartificial sequencesen artificial evolu-
tionary treeswe have chosento usereal sequenceandreal
evolutionarytreeg. This allows usto avoid someof the pit-
falls of simulationstudiessuchassimplistic modelsof evo-
lution and cladogenesisnd perhapsnakesthe conclusions
morepracticallyrelevant.

In all, we extractednine treesof 40 taxaeachfrom the RDP 16S
rRNA tree. In orderto determinewhat effect differentlevels of
sequencalivergencehave on supersamplingthreetreeswere ex-
tractedfrom eachof threedivergencdevels (shallov, medium,and
deep).Thedetailsof the extractedtreesarefoundbelon. 1000ran-
domquartetsfrom eachtree,uniformly distributedacrosgheedges
of thetreewerechoserfor tracking. Thiswasnecessarin orderto
male computatiortime feasible.For eachquartet 10 supersamples
of 5,10, 15,20, and30sequencewereanalyzedy maximumpar
simory, neighborjoining andquartetpuzzlingusingthe RDP 16S
rRNA alignment.Thesesupersamplewerecreatedoy addingran-
domly choserntaxafrom the 40 taxatreeto the quartetto obtaina
treewith thedesirednumberof taxa. Additionally the quartetitself
andthe complete40 taxatreewerealsoestimatedyy the methods.
For eachsetof tentreesthefollowing statisticsverecomputed:

e Quartet Accuracy: This statisticis the percentagef times
that the RDP quartetbeing supersampleavas correctly in-
ferredin thetreessupersamplettom it.

1The RDPevolutionarytreesusedarethemselesestimatesHow-
ever, theRDPis acarefullyassembledndmaintainecdevolutionary
treewith somelevel of confidence.
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e ConsensusAccuracy: For eachsetof supersamplesthe
consensugmajority) versionof the quartetcontainingthe
speciesrom theRDP quartetvascomputed Thepercentage
of timesin which theanalogougjuartetfrom eachof the su-
persampledreesagreesvith theconsensuguartetis termed
“consensusccurag’. This statisticprovides a measureof
consisteng independentf the RDPtree.

TreeAccuracy: This statisticis the percentagef edgesin
the supersampletteesthatwerecorrectlyinferredin regard
totheRDP.

The40taxatreesvererandomlysampledrom monophyletiggroups
of the RDP tree. To avoid unreasonablghortbranchespnly one
strain per speciesvas consideredor inclusion. The basisof the
treeswere the following groups: shallov tree #1 (Enteric Bacte-
ria), mediumtree#1 (Cyanobacteria)jeeptree#1 (Archaeat+ Eu-
bacteria) shallov tree#2 (Pseudomonasimediumtree#2 (Meth-
anogenicArchaea),deeptree#2 (Archaea+ Eubacteria)shallav
tree#3 (Arthrobacter) mediumtree#3 (Lactobacilli),deeptree#3
(Archaeat Eubacteria) Tablel1 presentsa summaryof thebranch
lengthsof thesetrees andsupportsour assertiorthatour treesrep-
resenta broadrangeof sequencelivergence.

The phylogenetianethodsusedin theanalysiswerethefollowing:
neighbofjoining [15] asimplementedn PAUP* 4.0b4a[18], us-
ing maximumlik elihoodderiveddistancedasedntheHasgava-
Kishino-Yano (HKY) modelof evolution [9], heuristicmaximum
parsimoy [7] alsoasimplementedn PAUP* 4.0b4a,andfinally
quartetpuzzling[17], on maximumlikelihoodinferredquartetsas
implementedn PUZZLE 4.0.2.

3. RESULTS AND CONCLUSIONS
Thefollowing graphspresenburresults.In eachgraph,the x-axis
presentshe supersampleizesand the y-axis representshe per
centaccurag. Figures2 through4 depictthe how supersampling
affectedthe accurag of the tracked quartetsas comparedto the
RDP quartettopology while figures5 through7 depicthow super
samplingaffectedthe consensusccuray of the tracked quartets.
Finally, figures8 through10 depicthow edgeaccuragy is affected
aslargerandlargerdatasetareanalyzed.



Table 1: Summary of the branch lengthsof the sampledtr ees

1S M 1D 2S 2M 2D 3S 3M 3D
Min. 0.0 0.0025 0.0020 0.0001 0.0 0.0033 0.0 0.0005 0.0028
Max. 0.0361 0.0743 0.5231 0.1088 0.1010 0.8893 0.0288 0.0859 0.7504
Ave. 0.0032 0.0101 0.0521 0.0055 0.0094 0.0697 0.0035 0.0064 0.0630
Std.Dev. 0.0059 0.0170 0.1195 0.0156 0.0181 0.1359 0.0060 0.0129 0.1257

Figure 2: Quartet Accuracy — Neighbor Joining
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Figure 3: Quartet Accuracy — Maximum Parsimony
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(1Smeansshallav tree#1, 1M meanamediumtree#1, etc.)

Figure 4: Quartet Accuracy — Quartet Puzzling
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Figure5: ConsensusAccuracy — Neighbor Joining
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Figure 6: ConsensusAccuracy — Maximum Parsimony
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Figure 7: ConsensudAccuracy — Quartet Puzzling
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Figure 8: TreeAccuracy — Neighbor Joining
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Figure 10: TreeAccuracy — Quartet Puzzling
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Theresultsof the experimentalstudystrongly supportthe conclu-
sion that supersamplingloesnot increasequartettopology accu-
rag). This conclusionis independenbf methodand of dataset.
Theaveragencreasen accuray affordedby supersamplinggs less
than2.5%for neighborjoining, lessthan1.2%for maximumpar
simory and0% for quartetpuzzling. Furthermorejn mary cases
supersamplingesultedin a decreasén accurag. The consensus
accurag, whichis independenof the RDP tree,alsosupportshis
conclusionasa similar decreasén accuray is alsoobsered. This
resultdoesnot necessarilycontradictthe conclusionsf Graybeal,
SmithandWarnaw, andHillis astheir conclusionswverebasedon
examiningthe effect of taxonomicsamplingon a single pathologi-
cal quartettopology Our resultsindicatethatthe beneficialeffects
of taxonomicsamplingon collectionsof quartettopologiesis min-
imal. The reasonfor this is not entirely clear One possibility is
that the numberof pathologicalquartettopologiesin a datasetis
small. Another possibility is that supersamplingntroducesaddi-
tional pathologicalquartettopologiestherebynegatingary benefit
of addingadditionaltaxa.

The resultsof the experimentalstudy also supportthe conclusion
thatsmallerdataset@re moreaccuratelyestimatedhanlargerda-
tasets.This is trueregardlesof inferencemethod. In fact, there-
ductionin edgeaccurag canbe dramatic,for example,maximum
parsimory and neighborjoining on the 2S datasetand maximum
parsimory on the 1M dataset.This is consistentith the conclu-
sionsof the SmithandWarnav simulationstudy The surprisingly
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poor performanceof quartetpuzzlingin our study (sometimesgo-
ing belav the 33% accurag expectedby chancealone)canbe ex-
plainedby the factthatthe treesobtainedby this methodareoften
highly unresoled. The edgeshatareresolhed, however, aregen-
erally quiteaccurate.

We concludethat althoughcertain (pathological)quartettopolo-
giesmay benefitfrom supersamplingthereis no evidenceto sug-
gestthat a collection of quartettopologiesdravn from the same
datasetwill benefitcollectively from supersampling.The impli-
cationof this for quartetmethodss that supersamplingannotbe
usedto amplify the accurag of a setof quartettopologies. Al-
thoughwe took efforts to samplebroadlyfrom the RDP, onemust
be cautiousin extendingthe resultsof this studyto otherdatasets.
16SrRNA is a highly consered molecule,andit is possiblethat
thetypesof pathologicalquartetshat supersamplings thoughtto
eliminatearerarein this data. Futurework shouldincludestudies
of othermoleculessuchasthe proteinrbcL. Additionally, investi-
gatingotherphylogeneticnethods n particularmaximumlik eli-
hood,to seeif they tooareimmuneto thebenefitof supersampling
would provide additionalpracticalknowledgeto biologists.
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