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Abstract

Many fundamental questions in evolution remain unresolved despite the abundance of genetic
sequence data that is now available. This state of affairs is partly due to the lack of simultaneously
efficient and accurate computational methods for inferring evolutionary trees. Efficient methods are
critical since the abundance of sequence data has resulted in the need to analyze large datasets.
Methods with guaranteed accuracy are important since biologists require proof that results are
meaningful. In this paper the first polynomial time approximation scheme (PTAS) for selecting
the branches of an evolutionary trees from a list of candidate branches is presented. PTAS'’s are
highly desirable since they allow the approximation of an optimal solution with arbitrary precision
in polynomial time. This PTAS is based upon recent advances in the approximation of smooth
polynomial integer programs.
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1. Introduction

In recent years the amount of DNA sequence data available has grown exponéntially.
This data are both deep and broad in the s¢hatentire genomes of several organisms
have been sequenced (such as yeast) and several genes shared by the majority of species
on the planet have been widely sequenced (such as HSP70).

This has had, and will continue to have, a major impact on biological and medical
science. In particular, the breadth and accyiat these data has made it possible to address
evolutionary questions onarit of reach. For example, the Ribosomal Database Pfoject
at Michigan State University now contains evolutionary trees describing the evolutionary
history of over 33000 small sub unit rRNA sequences [16].

An obstacle to constructing large evolutionary trees is not the availability of data
but the current state of the computational methods for inferring evolutionary trees. The
problem of inferring an evolutionary tree from sequence data has many formulations
including maximum likelihood [9], maximum parsimony [10], minimum distance [18] and
guartet recombination [4,5,7,15,20]. Virtually all of these formulations are NP-complete,
and so, methods for inferring evolutionary trees tend to be either heuristic or exhaustive
in nature. This is frustrating for biologists since popular heuristic methods are often
statistically inconsistent or slow to converge [14] whereas the growing size of datasets
render exhaustive methods such as maximum likelihood infeasible.

The challenge for computer scientists is to develop methods for inferring evolutionary
trees that are both efficient and give accurgograntees. Given that most formulations of
the evolutionary tree inference problem are NP-hard, the task is to dgy@lpomial time
approximation schemg®TAS’3 for inferring evolutionary trees. A PTAS approximates
the optimal solution to a problem with arbitrary precision in polynomial time.

In this paper an advance of this nature is presented: the first PTAS for obtaining an
evolutionary tree from a list of candidate branches.

2. From branchesto trees: character compatibility

An evolutionary tree is modeled by a rooted binary t®evhere the leaves of’
are labeled by a sef. The edges of an evolutionary tree have an associated length that
represents the amount of mutation along that lineage. Labélsaie typically species or
genes. Ife is an edge off’ thene induces the bipartitioiA, B) of S if T — {e} consists
of a tree labeled byt and a tree labeled b®. This is denoted = (A, B) and (A, B)
is called abipartition of 7. A bipartition (A, B) is trivial if either |[A] =1 or |B| = 1.
Trivial bipartitions are induced by leaf edges Bf The sethipartitiongT) is the set of
edge induced bipartitions df.

Itis well known that the structure of an evolutionary t®ean be recovered from its set
of bipartitions [3]. That is, the bipartitions of an evolutionary tree give specific information

6 visit http://www.ebi.ac.uk/sterk/genome-MOT/ for anline progress report on major genome sequencing
efforts.
7 The RDP's URL is http://rdp.cme.msu.edu.
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aboutT . This motivates the following paradigm for inferring an evolutionary tréehat
approximates the unknown true evolutionary tfee
1. Obtain a setR of bipartitions of S from the data such thaR approximates
bipartitiong(T).
2. Recombine the bipartitions iR, under some optimality criterion, to produce a ti€e
3. Determine the root and edge lengthg¢f
There are many diverse methods that can be used in step 1 to obtainRadfet
bipartitions supported by the data.

e Characters that bipartitiosi can be derived from sequence or morphological data [21].

For example, a gene can be used to separate species into those that possess the gene and

those that do not [19].

e Data are often analyzed using severahtéques each producing different trees. These
trees can be used to generate a list of edge induced bipartitions from which a consensus
tree is to be constructed.

e Methods such as hypercleaning [5] can be used to generate a list of bipartitions most
highly supported by sequence data.

Step 3 of this paradigm, rooting and determining edges lengths, is well-studied and
several methods exist for doing this [21].

A pair of bipartitions areompatiblef they can exist within the same evolutionary tree.

A set of bipartitions is compatible if they are pairwise compatible, or in other words, can all
exist within the same tree. Clearly, the largest number of compatible bipartitiofy is 2
which is the number of edges in an evolutionary tree labelel.WhenR is compatible,
obtaining an evolutionary tree such thRic bipartitions(7T') can be done irO (nm) time
wheren = |S| andm = |R| [12].

However, it is typical thatR| > 2|S| — 1, and so,R is notcompatible For example,

Fig. 1 depicts a partial list of bipartitions (displayed as boxes) of a set of HSP70 sequences,
ordered left to right by support, generateyl thypercleaning. Arcs connect incompatible
bipartitions.

Step 2 of the above paradigm has many formulations. Biologists have examined
bipartition compatibility for many years [8,17]. A natural generalization of this problemis
the well-studiegperfect phylogeny problefi,13]. However, this formulation requires that
the bipartitions inR meet certain assumptions not often satisfied when the bipartitions are
obtained from experimental data. As a result, the recombination of compatible bipartitions
has been formulated as the falling optimization problem:

Character Compatibility (CC)
Instance: SetR of bipartitions of label sef.
Problem: Find a treel” labeled bysS that maximizesbipartitiong(T) N R|.

The decision version o€haracter Compatibilityis NP-complete [6]. Furthermore,
Character Compatibilitycannot be approximated within ratiof. This follows from
the NP-completeness proof that redu€dgjue to Character Compatibility{6] and the
inapproximability ofClique[2].

A criticism of the CC formulation is that the optimization criterion ignores those
bipartitions of R that are not bipartitions of the constructed tree. Hence, bipartitions that
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Fig. 1. Typically, bipartitions are not compatible as in this analysis.
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Fig. 2.7y andT»: T> fits ({a, b, ¢, d}, {e, f, g, h}) better.

may be informative, though not perfect, do not contribute to the score of the constructed
tree.

A better optimization criterion would attempt to fit a tree to all bipartitions using a more
accurate measure. To illustrate, consider the bipartitionB) = ({a, b, ¢, d}, {e, f, g, h})
and the two tree%; and7>, appearing in Fig. 2. Neither of these trees contain the bipartition
(A, B) and so theCC optimization criterion would not differentiate between these two
trees but clearl\f; is a better approximation ¢f4, B). In particular, four leaf relocations
are required foff; to contain the bipartitiodA, B) but only one leaf relocation is required
for T, to contain(A, B).

Motivated by this example, define the similarity between two bipartitioasB)
and (C, D) to be s((A, B),(C,D)) =maX{|ANC|+|BND|,|AND|+|BNCl|}.
In the above examples(e1, (A, B)) = 4 whereass(ez, (A, B)) = 7 (recall thate; =
({a,c,e, g}, {b,d, f,h}) andex = ({a,b,c},{d, e, f, g, h})). The distance between two
bipartitions(A, B) and(C, D) is defined to bel((A, B), (C, D)) =|AU B| — s((A, B),
(C, D)).
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Fig. 3. lllustratings (7, R).

Extending the notion of similarity to trees, define the similarity between &aftrard a
bipartition (A, B), denoteds (T, (A, B)), to be maxcr (e, (A, B)). That is, the similarity
is the maximum similarity betweef!, B) and a bipartition off'. Finally, the similarity
between a seR of bipartitions and a tre€ is

s(T,R) = 2: s(T, (A, B)).
(A,B)eR
Similarity allows us to define a fractional version@©€:

Fractional Character Compatibility (FCC)
Instance: SetR of bipartitions of label se§.
Problem: Find a treel” labeled byS that maximizes (T, R).

To illustrate, if R = {({a,b,c,d},{e, f,g}),{a,b, g}, {c,d, e, f}),{a,c,d,e, [},
{b, gh} then for the tred" depicted in Fig. 3

s(T,R)=s(T.({a,b,c.d} {e, f. g})) +s(T. ({a,b. g}.{c.d. e, f}))
+s(T, ({a.c.d, e, f},{b.g}))
= s(ez, ({a, b,c,d}, e, f, g})) + s(el, ({a, b, g}, {c,d,e, f}))
+s(e3, ({a, c,d,e, f},1{b, g}))
=6+6+5=17

The remainder of the paper is organized as follows. In Section 3 it is proveR@@t
is NP-complete and in Section 4 a PTAS FEC is presented.
3. FCC isNP-complete

In this section we prove the following:
Theorem 3.1. FCC is NP-complete.

Proof. We show thaFCC is NP-hard by a reduction from the problet3C [11].



6 J. Badger et al. / Journal of Algorithms 51 (2004) 1-14

Exact Cover by 3-Sets (X3C)

Instance: Set S with |S| = 3¢ for some integey; and a collectionC = {S1, ..., S},
where eacl$;, is 3-element subset ¢f.

Question: Does there exist a subcollecti@gi of C such every element of occurs in
exactly one subset ia’?

For the reduction fronX3C to FCC, we need an extra constraint that for al j,
[SiNS;I<1.

Lemma 3.1. The problemX3C remains NP-hard even if we assume that al¢ j,
[S; NS <1

Proof. We reduce the genera®3C to our restricted version. Let set and collection
C ={81,...,8,} be an instance oK3C. For eachS; = {x, y, z}, construct setsX; =
{x,a;i,bi}, Yi =1{y.ci.di}, Zi = {z, e, fi}, Ai ={ai.ci,e;}, and B; = {b;, d;, f;}, where
ai,bi,ci,d;, e, f; ¢ S are new elements. Let

m m

S'=su| Jlai. bi.ci.di.ei. fi}. C'=cul JiXi.Yi. 2. A, Bi}.

i=1 i=1
Then clearly, the subsets @ satisfy the constraint. Moreover, for eaglany exact cover
C” C C’' of §’ contains either all subsels, Y;, Z; or none of them. Henc&, contains an
exact cover of5 if and only if C’ contains an exact cover 6f. O

We reduce the above restricted versionX8C to FCC. Let setS and collection
C ={S1,..., S} be aninstance of the restrict¥@®C such that forali # j, |S; N S;| < 1.
Suppose thdtS| = 3¢. We construct an instance BEC as follows: for eacl$; € C, define
a bipartition(S;, S — S;). Then we claim thaf§ has an exact cover i@ if and only if the
FCC instance has a solution of costi2— ¢g).

To prove the “only if” part of the above claim, suppose thiat= {S;,, ..., S;, } forms
an exact cover of. Then, the tree in Fig. 4 obviously has a cost of at mgst 2 q).

Now suppose that thECC instance has a solution treée of cost 4m — ¢). Let
(Siys § = Siy), ..., (Si,, S — S;,) be the bipartitions that are containedin(i.e., each
of them is induced by some edge Bj and (Sipy1sS = Sipya)s oo Sipyrs S = Siy,) the
bipartitions with distance 1 frorfi. Then

2g=2p+r.
Clearly, the subsets;,, ..., S;, are pairwise disjoint. Moreover, for eagh where 1<

j <r,sincethe bipartitior(IS,-p+_,, S—Si,.;) has distance 1 from the trde T must contain

Si, Si, Si,

Fig. 4. The optimal tree foFCC corresponding to an exact cover $f
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two of the three elements cSt»pH as siblings. Observe that becatjuSg+_, NS, | <1for
any 1< k < p, none of these two sibling elements is contained in the sufséor any
1< k< p.SincelS;,,; NS, | <1foranyj#kandT is fully resolved (i.e..T is
degree-3), the pairs of sibling elements corresponding to the subsgts, ..., S;,,,
must be pairwise disjoint. Hence,

r<3(q - p)/2.

Therefore, we have(@ — p) < 3(¢g — p)/2, whichimpliesp = g. Thatis,S;, ..., S;, form
an exact coverof. O

4, A PTASfor FCC

Let R be an instance oFCC with label setS wheren = |S| andm = |R|. Let
TopT denote an optimal solution for this instance. Our main result is a polynomial time
approximation scheme that, for aay- 0, produces a tre&xpx in polynomial time such
that

s(Tapx, R) = (1 —¢€)(TopT, R).

This result requires the caveat thatontains® (n) bipartitions. That this requirement
emerges from the analysis is not surprising since afreae »n leaves hag — 3 nontrivial
bipartitions. NowR is a set of bipartitions from whiclf is to be recovered. Thef2 (n)
bipartitions are required to reeer the nontrivial bipartitions of' and we expect tha® (n)
bipartitions are actually informative. Consequently, the requirement|Rjat @ (n) is
quite natural.

Our PTAS forFCC utilizes two conceptst-bin contractions and smooth polynomial
integer programs. These two concepts and their relationskig@are overviewed below.
They will be examined in detail in Sections 4.1 and 4.2.

Definition 4.1. A tree Ty, is ak-bin contractionof Topr if there is a partition ofS into bins
S1, 82, ..., St such that

o foreachsS;, |S;| < 6n/k. Furthermore, there is a vertexin T; of degredsS; |+ 1, called
thebin root, that is adjacent to each vertexs$p;
o for each edge of Toptthere is an edge’ of T; such thatk(e,e’) > n — 6n/k.

In Section 4.1 it is shown that there iskabin contractionT; of Topt that is a good
approximation offopr, i.e,s(Tk, R) > (TopT, R) — (6/k)mn wherem = |R| andn = |S§].
Our approach to solvingCC is to approximatdopt indirectly by approximatingy. The
approximation off is described below.

Fix k and letK beT; with all leaves removed (and thus the leave&ddre the bin roots
of Ty). K is called thekernelof 7, and7; is called acompletiorof K. K is completed by
providing a label-to-bin assignment: labelsSrare assigned as children to bin rootskf
(see Fig. 5).

An example of &-bin contraction appears in Fig. 5.
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Fig. 5. From left to right: a tre€; a 4-bin contractior?, of T with bin rootsw, x, y, andz; the kernelK of Ty;
and a completion ok .

If the kernel K of T; is known then, to approximat@&, it suffices to determine
an approximately optimal label-to-bin assignment #or This problem is formalized as
follows:

Label-to-Bin Assignment (LBA)
Instance: SetR of bipartitions ofS and a binary kernek with & leaves.
Problem: Find a completiorf” of K that maximizes (7', R).

In Section 4.2L BA is formulated as a smooth polynomial integer problem and a
PTAS for LBA is presented. In particular, it is shown that, for any 0, s(T’, R) >
s(T, R) — e(m +n)2, whereR andK denote the instance &BA, T’ is the completion of
K produced by our PTAS arff is an optimal completion ok .

The approximation algorithm farCC proceeds by solving (apgximately) an instance
of LBA for every kernel withk leaves. Sincé is a constant, this can be done in polynomial
time using the PTAS fob. BA. Let Tapx be the completed tree obtained that maximizes
s(Tapx, R). Since the kernelk of Tj is one of the trees completed, it follows that
s(Tapx, R) > s(T’', R) whereT’ is the completion ok obtained by the PTAS fdr BA.
The approximation algorithm fd¥CC is summarized in Section 4.3.

4.1. Contracting the optimal tree

An algorithm calledk-Bin Contractionappears below. This algorithm first appeared as
an algorithm for obtaining-bin decompositions [15] but is adapted here to generate a
k-bin contraction offppr.

k-Bin Contractionfinds ak-bin contractiorl; of Topt. For convenience, lef = Topt
and assume thdt is binary, without loss of generality.

Algorithm k-Bin Contraction(T).

1. RootT at an arbitrary internal vertex. L&t(v) denote the subtree @f rooted atv.
2. Traversdl', beginning at the root, such that for each ventesisited:
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If |T(v)| <6n/kthen
e contract all internal edges @f(v),

e labelv as a bin root and
e continue traversal at's parent.

Otherwise, continue traversal at an unvisited chila .of
3. For each bin root with parenty’ and siblingu':
If |T(v)| <3n/k andu’ has a child: with |T'(u)| < 3n/k then

o transfer the leaves ifi (») to the bin ofv,
e contract{u, u’}, and
e contract{u’, v'}.

4. For each leat of T not assigned to a bin, bisect the edge betweand its parent with
a hew vertex, and markv as a bin root.

The last step of the algorithm is necessary since a leaf cannot be a bin root.
Theorem 4.1. There is ak-bin contraction offppr.

Proof. Let Ty be the tree produced by tkebin contraction algorithm. It is shown th#t
satisfies both properties thakein decomposition must satisfy (see Definition 4.1).

Property 1 (Bounded Bin Si2eCall a bin of 7, smallif it has size less thani3 k. A bin
root issmallif its bin is small. Call a bin of7}, is large if it has size between:3 k and
6n/k, inclusive. A bin root idargeif its bin is large. Letshbindenote the number of small
bins inT; andlbin the number of large bins .

The following lemma is required:
Lemma 4.1 [15]. sbin< 2lbin.

Proof. We prove the following by induction: For every if u is a vertex of height and
is not a bin root then the lemma holds for the subffée).

For the base case, assume thags childrerp andg. It cannot be that botp andq are
small otherwisdT (u)| < 6n/k and the algorithm would not have visitgdandg . Hence,
the lemma is true fof (u).

In general, assume thathas childrenp andgq. If both p andg are bin roots then
the argument for the base case applies. If neithaor ¢ are bin roots then the inductive
hypothesis applies t@ (p) and T (q), and hence the lemma holds o). Otherwise,
suppose thap is not a bin root buy is.

If ¢ is large then the induction can be appliedt@) and the claim follows. Otherwise,
suppose thag is small. Letp; and p2 be the children ofp. Neitherp; nor p> are small,
since otherwise the algorithm would have merged on& @fy) and T (p2) with T'(g) in
step 3. By the inductive hypothesghin < 2lbin; andsbinp < 2Ibiny wheresbin, Ibing,
sbirp, andlbiny are the numbers of small and large bingip1) andT (p1), respectively.
It follows thatsbim +sbirp + 1 < 2(lbiny +1biny), and hence the claim holds o). O
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Fig. 6. Case 1.

v

B1UuB2 UB3 UB4

Fig. 8. Case 3.

Since each large bin df; has size at leasti3 k, Ibin < k/3. T, haslbin + shinbins,
and so lbin + sbin < Ibin 4+ 2lbin = 3lbin < k, by Lemma 4.1. We conclude th#@t has
less thark bins each with size bounded by £.

Property 2 (Edge Preservation Let e be an edge offppt. If the algorithm does not
contracte then there is an edggin Tj such that (e, ¢’) = n and we are done. Hence, now
consider only edges dfopt that have been contracted.

There are three cases to be considered. These three cases are depicted in Figs. 6-8.
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In the first caseg is part of a subtree that is contracted to form a bin with bin root
Let ¢’ be the edge from to v’ parent inT;. Referring to Fig. 6¢ = (A, B U C) and
¢ =(AUB,C). Since|B| < 6n/k, it follows thats(e, ¢’) > n — 6n/k.

In the second case, is an edge, as depicted in Fig. 7, that is contracted in step 3 of
the algorithm to form a bin with bin roat. Let ¢’ be the edge from the parent oto the
grandparent of.. Referring to Fig. 7¢ = (AU B1, B, U C) ande’ = (AU B1 U By, C).
Since|Bz| < |B1 U By| < 6n/k, it follows thats(e, ¢’) > n — 6n/k.

In the third casee is an edge, as depicted in Fig. 8, that is contracted in step 3 of the
algorithm to form a bin with bin roob. Let ¢’ be the edge fromv to the parent ofv.
Referring to Fig. 8¢ = (AU Bo U B3U B4 U C, B1) ande’ = (AUC, B1 U Bo U B3U By).
Since|B2 U B3| < |B1U B2 U B3 U By| < 6n/k, it follows thats(e,e’) >n —6n/k. O

We also need that/-bin contraction offlopt be a good approximation @opt:

Theorem 4.2. There is ak-bin contractionT} of Topt such thats(7;, R) > s(TopT, R) —
(6/k)mn whereR is an instance oF CC with label setS, m = |R|, andn = |S|.

Proof. Let T; be ak-bin contraction ofTopt. Then for each edge’ of Topt there is
an edgee’ of T; such thats(e,e’) > n — 6n/k. It follows that for each(A, B) € R,
s(Ty, (A, B)) > s(TopT, (A, B)) — 6n/k. As there aren bipartitions inR, s(Tj, R) >
s(TopT, R) — (6/k)mn. O

4.2. APTAS for LBA

Let R={(A;, B)) | 1<i <m}, S andK be an instance of theBA problem wherek
hask leavesT is an optimal completion ok if T maximizes (T, R), over all completions
of K. To formalize this optimization problesmooth polynomialare used. A degregé
polynomialp(x) is t-smoothwherer is a constant, if the coefficient of each degi¢erm
is in the interval—n? =7, rn?=1], for 0<i < d.

Define the 0-1 label-to-bin assignment with variables (x,,) as follows:

xyp = 1 if label v is assigned to bih, otherwisex,;, = 0.

To ensure that each labele S is assigned to one bin the following constraints are
created for each labet

vab =1
b

In order to evaluate(7’, R), whereT’ is the completion oK specified by the label-
to-bin assignment = (x,;), it is necessary to assign bipartitio;, B;) in R to edges
of K sothats(e, (A;, B;)) can be evaluated. To this end, define the 0—1 bipartition-to-edge
assignment with variables= (y;.) as follows:

vie = 1if (A;, B;) is assigned to edgeof T, otherwisey;, = 0.
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To ensure that each bipartition is assigned to one edge the following constraints are
created for each bipartitiof¥;, B;):

Zyie =1
e

Create the following polynomial for eacld;, B;) € R:
py= Y y( IDRTEDS z)
e=(A,B)eK vEA; a€A veB; beB
Sincey;, = 1 for exactly one edge= (A, B) € K,
pix.y)= Y Xt Y. xw=s(e (A B)).
VEA;, acA veB;, beB

Finally, define p(x,y) = >_1<; <, pi(x,y). The optimal value forp(x, y) is then
s(T, R).
In summary, our optimization problem is to find a 0—1 label-to-bin assignmend a
0-1 bipartition-to-edge assignmenso that
p(x,y) is maximized
vab =1, foreach labeb,
b

Y yie=1, foreach bipartitior(A;, B;),
e

vab <6n/k, foreach birp.
v

Observe thap(x, y) is a degree 2 polynomial and it is 1-smooth. Furthermpf(e, y)
is defined onO (n + m) variables.
Arora et al. [2] present a PTAS for solvingsmooth integer polynomial programs:

Theorem 4.3[2]. For eache > Othere is a polynomial time algorithm that produce8-al
assignment such thatp(z) > p(z*) — en? wherep(z) is at-smooth polynomial defined
onn variables with degred and with maximum valug(z*).

Following from the above discussion and Theorem 4.3, we have

Theorem 4.4. For eache > 0, there is a polynomial time algorithm that, for each instance
R andK of LBA, produces a completioR’ of K such thak (7', R) > s(T, R) —e(n+m)?
whereT is an optimal completion of .

4.3. Summary of the approximation algorithm and an interesting caveat
We summarize the PTAS that approximates an optimal solufissy to an instance

R of FCC. For each kerneK on k leaves (for sufficiently largé) an approximately
optimal completion ofK is found using the PTAS fdr BA. Let Tapx be the completion
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that maximizess(Tapx, R). It follows that s(Tapx, R) = s(T’, R) where T’ is the
approximately optimal completion of the kerngl of 7, and Ty, is ak-bin contraction
of TopT.

By Theorem 4.45(T’, R) > s(T, R) — ¢(n + m)? whereT is the optimal completion
of K, for anye > 0. We also have that(T, R) > s(Tx, R) ands(Tx, R) > s(Topt, R) —
(6/k)mn by Theorem 4.2. Thus we have

s(Tapx, R) = 5(T, R) — e(m +n)? > s(Topr, R) — (6/kymn — € (m +n)>.
At this point a lower bound on(7opT, R) is established using the following lemma:

Lemma 4.2. If (A, B) and (C, D) are bipartitions ofS wheren = |S| thens((A, B),
(C,D))>n/2.

Proof. Since,[ANC|+|AND|+|BNC|+|BND|=n, eitherANC|+|BND| >n/2
or[AND|+|BNC|>n/2. O

Lemma 4.2 leads directly to the lower bousndopT, R) > mn/2. Now our caveat, if
m = O (n) then the following theorem is immediate:

Theorem 4.5. For eache > 0, there is a polynomial time algorithm that, for each instance
R of FCC, produces a tre@apx such thats(Tapx, R) > (1 — €)s(TopT, R).

The requirement thatn = ®(n) is natural. Since an evolutionary tree has- 3
nontrivial edges, it is expected that onty(n) estimated bipartitions will actually be
informative.

5. Conclusions

This paper introduces theCC criterion for branch selection, justifies the use of this
criterion and then provides a PTAS for solving the branch selection problem using the
FCC criterion. Some final comments are warranted:

o A weighted version of th&CC criterion can be obtained/tassigning a weight to each
bipartition. Weights arise naturally in practice:
— Hypercleaning produces a list of bipauitis ranked by support. It is then preferable
to select bipartitions with the highest weighte@C score.
— Given a collection of estimatdy, T, .. ., T; of the unknown evolutionary treg, the
weight of a bipartition(X, Y) is the percentage of these estimates contaithg’).
The weighted-CC score would prefer high frequency bipartitions.

The PTAS presented here can easily be extended to the weighted versiog of

e The results presented here are algorithmicature. To obtain a practical tool for branch
selection, further work is required. First, efficient implementations of algorithms for
approximating smooth polynomial integer programs are required in order for the PTAS
to be effective. Second, tHeCC criterion must be demonstrated as being biologically
relevant through experimentation or simulation.



14 J. Badger et al. / Journal of Algorithms 51 (2004) 1-14

Acknowledgments

The authors thank the referees for suggested improvements to the paper.

References

[1] R. Agarwala, D. Fernandez-Baca, A polynomiake algorithm for the perfect phylogeny problem when
the number of character states is fixed, SIAM J. Comput. 23 (6) (1994) 1216-1224.

[2] S. Arora, C. Lund, R. Motwani, M. Sudan, M. Szelye Proof verification and hardness of approximation
problems, in: Proceedings of the Thirty-Third IEEE Symposium on the Foundations of Computer Science,
1992, pp. 14-23.

[3] J.-P. Barthélemy, A. Guénoche, Trees amdxXimity Representations, Wiley, New York, 1991.

[4] V. Berry, O. Gascuel, Inferring evolutionary trees with strong combinatorial evidence, in: Proceedings of the
Third Annual International Computingnd Combinatorics Conference, 1997, pp. 111-123.

[5] D. Bryant, V. Berry, T. Jiang, P. Kearney, M. Li, T. Wareham, H. Zhang, A practical algorithm for recovering
the best supported edges of an evolutionary tree, in: Proceedings of the lith Annual ACM-SIAM Symposium
on Discrete Algorithms, 2000, pp. 287-296.

[6] W.H.E. Day, Inferring phytogenies from dissiiarity matrices, Bull. Math. Biol. 49 (4) (1987) 461-467.

[7] P. Erdés, M. Steel, L. Székely, T. Warnow, Constructing big trees from short sequences, in: Proceedings of
the 24th International Colloquium on famata, Languages, and Programming, 1997.

[8] G.F. Estabrook, F.R. McMorris, When are two qudilita taxonomic characters compatible? J. Math. Biol. 4
(1977) 195-200.

[9] J. Felsenstein, Evolutionary trees from DNA sequesn A maximum likelihood approach, J. Mol. Evol. 17
(1981) 368-376.

[10] W.M. Fitch, Toward defining the course of evtibn: Minimal change for a sxific tree topology, Syst.

Zool. 20 (1971) 406-441.

[11] M.R. Garey, D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness,
Freeman, New York, 1979.

[12] D. Gusfield, Efficient algorithms for infeing evolutionary trees, Networks 21 (1991) 19-28.

[13] M. Fellows, H. Bodlaender, T. Warnow, Two strikegainst perfect phylogeny, in: Proceedings of the 19th
International Colloquium on Autoata, Languages, and Programming, in: Lecture Notes in Comput. Sci.,
1992, pp. 273-283.

[14] D. Hillis, J. Huelsenbeck, D. Swofford, Hobgoblin of phylogenetics? Nature 369 (1994) 363—-364.

[15] T. Jiang, P.E. Kearney, M. Li, Orchestrating qe#st Approximation and data correction, in: Proceedings of
the 39th IEEE Symposium on Foundations of Computer Science, 1998, pp. 416—-425.

[16] L.B. Maidak, J.R. Cole, C.T. Parker, G.M. Garrity Jr., N. Larsen, B. Li, T.G. Lilburn, M.J. McCaughey,
G.J. Olsen, R. Overbeek, S. Pramanik, T.M. SchipddJ. Tiedje, C.R. Woese, A new version of the RDP
(Ribosomal Database Project), tleic Acids Research 27 (1999) 171-173.

[17] C.A. Meacham, G.F. Estabrook, Compatibility mmeds in systematics, Ann. Rev. Ecol. Syst. 16 (1985)
431-446.

[18] N. Saitou, M. Nei, The neighbopining method: A new method for renstructing phylogenetic trees, Mol.

Biol. Evol. 4 (1987) 406—425.

[19] B. Snel, P. Bork, M.A. Huynen, Genome phylogebased on gene content, Nat. Genet. 21 (1999) 108-110.

[20] K. Strimmer, A. von Haeseler, Qdtat puzzling: A guartet maximum-l&tihood method for reconstructing
tree topologies, Mol. Biol. Evol. 13 (7) (1996) 964—969.

[21] D.L. Swofford, G.J. Olsen, P.J. Waddell, D.M. Hillis, Phylogenetic inference, in: D.M. Hillis, C. Moritz, B.K.
Mable (Eds.), Molecular Systematics, 2nd amiti Sinauer AssociatesyBderland, MA, 1996, pp. 407-514.



