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Abstract

Many fundamental questions in evolution remain unresolved despite the abundance of
sequence data that is now available. This state of affairs is partly due to the lack of simultan
efficient and accurate computational methods for inferring evolutionary trees. Efficient metho
critical since the abundance of sequence data has resulted in the need to analyze large
Methods with guaranteed accuracy are important since biologists require proof that resu
meaningful. In this paper the first polynomial time approximation scheme (PTAS) for sele
the branches of an evolutionary trees from a list of candidate branches is presented. PTA
highly desirable since they allow the approximation of an optimal solution with arbitrary prec
in polynomial time. This PTAS is based upon recent advances in the approximation of s
polynomial integer programs.
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1. Introduction

In recent years the amount of DNA sequence data available has grown exponen6

This data are both deep and broad in the sensethat entire genomes of several organis
have been sequenced (such as yeast) and several genes shared by the majority o
on the planet have been widely sequenced (such as HSP70).

This has had, and will continue to have, a major impact on biological and me
science. In particular, the breadth and accuracy of these data has made it possible to add
evolutionary questions onceout of reach. For example, the Ribosomal Database Pro7

at Michigan State University now contains evolutionary trees describing the evoluti
history of over 33000 small sub unit rRNA sequences [16].

An obstacle to constructing large evolutionary trees is not the availability of
but the current state of the computational methods for inferring evolutionary trees
problem of inferring an evolutionary tree from sequence data has many formul
including maximum likelihood [9], maximum parsimony [10], minimum distance [18]
quartet recombination [4,5,7,15,20]. Virtually all of these formulations are NP-comp
and so, methods for inferring evolutionary trees tend to be either heuristic or exha
in nature. This is frustrating for biologists since popular heuristic methods are
statistically inconsistent or slow to converge [14] whereas the growing size of da
render exhaustive methods such as maximum likelihood infeasible.

The challenge for computer scientists is to develop methods for inferring evoluti
trees that are both efficient and give accuracyguarantees. Given that most formulations
the evolutionary tree inference problem are NP-hard, the task is to developpolynomial time
approximation schemes(PTAS’s) for inferring evolutionary trees. A PTAS approximat
the optimal solution to a problem with arbitrary precision in polynomial time.

In this paper an advance of this nature is presented: the first PTAS for obtaini
evolutionary tree from a list of candidate branches.

2. From branches to trees: character compatibility

An evolutionary tree is modeled by a rooted binary treeT where the leaves ofT
are labeled by a setS. The edges of an evolutionary tree have an associated lengt
represents the amount of mutation along that lineage. Labels inS are typically species o
genes. Ife is an edge ofT thene induces the bipartition(A,B) of S if T − {e} consists
of a tree labeled byA and a tree labeled byB. This is denotede = (A,B) and (A,B)

is called abipartition of T . A bipartition (A,B) is trivial if either |A| = 1 or |B| = 1.
Trivial bipartitions are induced by leaf edges ofT . The setbipartitions(T ) is the set of
edge induced bipartitions ofT .

It is well known that the structure of an evolutionary treeT can be recovered from its s
of bipartitions [3]. That is, the bipartitions of an evolutionary tree give specific informa

6 Visit http://www.ebi.ac.uk/sterk/genome-MOT/ for anonline progress report on major genome sequen
efforts.

7 The RDP’s URL is http://rdp.cme.msu.edu.
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aboutT . This motivates the following paradigm for inferring an evolutionary treeT ′ that
approximates the unknown true evolutionary treeT :

1. Obtain a setR of bipartitions of S from the data such thatR approximates
bipartitions(T ).

2. Recombine the bipartitions inR, under some optimality criterion, to produce a treeT ′.
3. Determine the root and edge lengths ofT ′.

There are many diverse methods that can be used in step 1 to obtain a seR of
bipartitions supported by the data.

• Characters that bipartitionS can be derived from sequence or morphological data [
For example, a gene can be used to separate species into those that possess the
those that do not [19].

• Data are often analyzed using several techniques each producing different trees. Th
trees can be used to generate a list of edge induced bipartitions from which a con
tree is to be constructed.

• Methods such as hypercleaning [5] can be used to generate a list of bipartition
highly supported by sequence data.

Step 3 of this paradigm, rooting and determining edges lengths, is well-studie
several methods exist for doing this [21].

A pair of bipartitions arecompatibleif they can exist within the same evolutionary tre
A set of bipartitions is compatible if they are pairwise compatible, or in other words, c
exist within the same tree. Clearly, the largest number of compatible bipartitions is 2|S|−1
which is the number of edges in an evolutionary tree labeled byS. WhenR is compatible,
obtaining an evolutionary tree such thatR ⊆ bipartitions(T ) can be done inO(nm) time
wheren = |S| andm = |R| [12].

However, it is typical that|R| > 2|S| − 1, and so,R is not compatible. For example
Fig. 1 depicts a partial list of bipartitions (displayed as boxes) of a set of HSP70 sequ
ordered left to right by support, generated by hypercleaning. Arcs connect incompatib
bipartitions.

Step 2 of the above paradigm has many formulations. Biologists have exa
bipartition compatibility for many years [8,17]. A natural generalization of this proble
the well-studiedperfect phylogeny problem[1,13]. However, this formulation requires th
the bipartitions inR meet certain assumptions not often satisfied when the bipartition
obtained from experimental data. As a result, the recombination of compatible bipar
has been formulated as the following optimization problem:

Character Compatibility (CC)
Instance: SetR of bipartitions of label setS.
Problem: Find a treeT labeled byS that maximizes|bipartitions(T ) ∩ R|.

The decision version ofCharacter Compatibilityis NP-complete [6]. Furthermore
Character Compatibilitycannot be approximated within rationε . This follows from
the NP-completeness proof that reducesClique to Character Compatibility[6] and the
inapproximability ofClique[2].

A criticism of the CC formulation is that the optimization criterion ignores tho
bipartitions ofR that are not bipartitions of the constructed tree. Hence, bipartitions



4 J. Badger et al. / Journal of Algorithms 51 (2004) 1–14

ructed

ore

ition
two
s
d

o

Fig. 1. Typically, bipartitions are not compatible as in this analysis.

Fig. 2.T1 andT2: T2 fits ({a,b, c, d}, {e,f,g,h}) better.

may be informative, though not perfect, do not contribute to the score of the const
tree.

A better optimization criterion would attempt to fit a tree to all bipartitions using a m
accurate measure. To illustrate, consider the bipartition(A,B) = ({a, b, c, d}, {e, f, g,h})
and the two treesT1 andT2 appearing in Fig. 2. Neither of these trees contain the bipart
(A,B) and so theCC optimization criterion would not differentiate between these
trees but clearlyT2 is a better approximation of(A,B). In particular, four leaf relocation
are required forT1 to contain the bipartition(A,B) but only one leaf relocation is require
for T2 to contain(A,B).

Motivated by this example, define the similarity between two bipartitions(A,B)

and (C,D) to be s((A,B), (C,D)) = max{|A ∩ C| + |B ∩ D|, |A ∩ D| + |B ∩ C|}.
In the above example,s(e1, (A,B)) = 4 whereass(e2, (A,B)) = 7 (recall thate1 =
({a, c, e, g}, {b, d,f,h}) and e2 = ({a, b, c}, {d, e, f, g,h})). The distance between tw
bipartitions(A,B) and(C,D) is defined to bed((A,B), (C,D)) = |A ∪ B| − s((A,B),

(C,D)).
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Fig. 3. Illustratings(T ,R).

Extending the notion of similarity to trees, define the similarity between a treeT and a
bipartition (A,B), denoteds(T , (A,B)), to be maxe∈T (e, (A,B)). That is, the similarity
is the maximum similarity between(A,B) and a bipartition ofT . Finally, the similarity
between a setR of bipartitions and a treeT is

s(T ,R) =
∑

(A,B)∈R

s
(
T , (A,B)

)
.

Similarity allows us to define a fractional version ofCC:

Fractional Character Compatibility (FCC)
Instance: SetR of bipartitions of label setS.
Problem: Find a treeT labeled byS that maximizess(T ,R).

To illustrate, if R = {({a, b, c, d}, {e, f, g}), ({a, b, g}, {c, d, e, f}), ({a, c, d, e, f },
{b,g})} then for the treeT depicted in Fig. 3

s(T ,R) = s
(
T ,

({a, b, c, d}, {e, f, g})) + s
(
T ,

({a, b, g}, {c, d, e, f }))
+ s

(
T ,

({a, c, d, e, f }, {b,g}))
= s

(
e2,

({a, b, c, d}, {e, f, g})) + s
(
e1,

({a, b, g}, {c, d, e, f }))
+ s

(
e3,

({a, c, d, e, f }, {b,g}))
= 6+ 6+ 5 = 17.

The remainder of the paper is organized as follows. In Section 3 it is proven thatFCC
is NP-complete and in Section 4 a PTAS forFCC is presented.

3. FCC is NP-complete

In this section we prove the following:

Theorem 3.1. FCC is NP-complete.

Proof. We show thatFCC is NP-hard by a reduction from the problemX3C [11].
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Exact Cover by 3-Sets (X3C)
Instance: Set S with |S| = 3q for some integerq and a collectionC = {S1, . . . , Sm},

where eachSi , is 3-element subset ofS.
Question: Does there exist a subcollectionC′ of C such every element ofS occurs in

exactly one subset inC′?

For the reduction fromX3C to FCC, we need an extra constraint that for alli �= j ,
|Si ∩ Sj | � 1.

Lemma 3.1. The problemX3C remains NP-hard even if we assume that alli �= j ,
|Si ∩ Sj | � 1.

Proof. We reduce the generalX3C to our restricted version. Let setS and collection
C = {S1, . . . , Sm} be an instance ofX3C. For eachSi = {x, y, z}, construct setsXi =
{x, ai, bi}, Yi = {y, ci, di}, Zi = {z, ei, fi}, Ai = {ai, ci , ei}, andBi = {bi, di, fi}, where
ai, bi, ci, di, ei, fi /∈ S are new elements. Let

S′ = S ∪
m⋃

i=1

{ai, bi, ci, di, ei, fi}, C′ = C ∪
m⋃

i=1

{Xi,Yi,Zi,Ai,Bi}.

Then clearly, the subsets inC′ satisfy the constraint. Moreover, for eachi, any exact cove
C′′ ⊆ C′ of S′ contains either all subsetsXi,Yi,Zi or none of them. Hence,C contains an
exact cover ofS if and only if C′ contains an exact cover ofS′. �

We reduce the above restricted version ofX3C to FCC. Let setS and collection
C = {S1, . . . , Sm} be an instance of the restrictedX3C such that for alli �= j , |Si ∩Sj | � 1.
Suppose that|S| = 3q . We construct an instance ofFCC as follows: for eachSi ∈ C, define
a bipartition(Si , S − Si). Then we claim thatS has an exact cover inC if and only if the
FCC instance has a solution of cost 2(m − q).

To prove the “only if” part of the above claim, suppose thatC′ = {Si1, . . . , Siq } forms
an exact cover ofS. Then, the tree in Fig. 4 obviously has a cost of at most 2(m − q).

Now suppose that theFCC instance has a solution treeT of cost 2(m − q). Let
(Si1, S − Si1), . . . , (Sip , S − Sip ) be the bipartitions that are contained inT (i.e., each
of them is induced by some edge ofT ) and(Sip+1, S − Sip+1), . . . , (Sip+r , S − Sip+r ) the
bipartitions with distance 1 fromT . Then

2q = 2p + r.

Clearly, the subsetsSi1, . . . , Sip are pairwise disjoint. Moreover, for eachj , where 1�
j � r, since the bipartition(Sip+j , S−Sip+j ) has distance 1 from the treeT , T must contain

Fig. 4. The optimal tree forFCC corresponding to an exact cover ofS.
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two of the three elements ofSip+j as siblings. Observe that because|Sip+j ∩ Sik | � 1 for
any 1� k � p, none of these two sibling elements is contained in the subsetSik for any
1 � k � p. Since |Sip+j ∩ Sip+k | � 1 for any j �= k and T is fully resolved (i.e.,T is
degree-3), ther pairs of sibling elements corresponding to the subsetsSip+1, . . . , Sip+r

must be pairwise disjoint. Hence,

r � 3(q − p)/2.

Therefore, we have 2(q −p) � 3(q −p)/2, which impliesp = q . That is,Si, . . . , Sip form
an exact cover ofS. �

4. A PTAS for FCC

Let R be an instance ofFCC with label setS where n = |S| and m = |R|. Let
TOPT denote an optimal solution for this instance. Our main result is a polynomial
approximation scheme that, for anyε > 0, produces a treeTAPX in polynomial time such
that

s(TAPX,R) � (1− ε)(TOPT,R).

This result requires the caveat thatR containsΘ(n) bipartitions. That this requiremen
emerges from the analysis is not surprising since a treeT on n leaves hasn − 3 nontrivial
bipartitions. NowR is a set of bipartitions from whichT is to be recovered. ThenΩ(n)

bipartitions are required to recover the nontrivial bipartitions ofT and we expect thatO(n)

bipartitions are actually informative. Consequently, the requirement that|R| = Θ(n) is
quite natural.

Our PTAS forFCC utilizes two concepts:k-bin contractions and smooth polynom
integer programs. These two concepts and their relationship toFCC are overviewed below
They will be examined in detail in Sections 4.1 and 4.2.

Definition 4.1. A treeTk is ak-bin contractionof TOPT if there is a partition ofS into bins
S1, S2, . . . , Sk such that

• for eachSi , |Si | � 6n/k. Furthermore, there is a vertexvi in Tk of degree|Si |+1, called
thebin root, that is adjacent to each vertex inSi ;

• for each edgee of TOPT there is an edgee′ of Tk such thats(e, e′) � n − 6n/k.

In Section 4.1 it is shown that there is ak-bin contractionTk of TOPT that is a good
approximation ofTOPT, i.e, s(Tk,R) � (TOPT,R) − (6/k)mn wherem = |R| andn = |S|.
Our approach to solvingFCC is to approximateTOPT indirectly by approximatingTk. The
approximation ofTk is described below.

Fix k and letK beTk with all leaves removed (and thus the leaves ofK are the bin roots
of Tk). K is called thekernelof Tk andTk is called acompletionof K. K is completed by
providing a label-to-bin assignment: labels inS are assigned as children to bin roots ofK

(see Fig. 5).
An example of ak-bin contraction appears in Fig. 5.
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Fig. 5. From left to right: a treeT ; a 4-bin contractionT4 of T with bin rootsw,x,y, andz; the kernelK of T4;
and a completion ofK .

If the kernel K of Tk is known then, to approximateTk , it suffices to determine
an approximately optimal label-to-bin assignment forK. This problem is formalized a
follows:

Label-to-Bin Assignment (LBA)
Instance: SetR of bipartitions ofS and a binary kernelK with k leaves.
Problem: Find a completionT ′ of K that maximizess(T ′,R).

In Section 4.2,LBA is formulated as a smooth polynomial integer problem an
PTAS for LBA is presented. In particular, it is shown that, for anyε > 0, s(T ′,R) �
s(T̂ ,R) − ε(m+ n)2, whereR andK denote the instance ofLBA, T ′ is the completion of
K produced by our PTAS and̂T is an optimal completion ofK.

The approximation algorithm forFCC proceeds by solving (approximately) an instance
of LBA for every kernel withk leaves. Sincek is a constant, this can be done in polynom
time using the PTAS forLBA. Let TAPX be the completed tree obtained that maximi
s(TAPX,R). Since the kernelK of Tk is one of the trees completed, it follows th
s(TAPX,R) � s(T ′,R) whereT ′ is the completion ofK obtained by the PTAS forLBA.
The approximation algorithm forFCC is summarized in Section 4.3.

4.1. Contracting the optimal tree

An algorithm calledk-Bin Contractionappears below. This algorithm first appeared
an algorithm for obtainingk-bin decompositions [15] but is adapted here to genera
k-bin contraction ofTOPT.

k-Bin Contractionfinds ak-bin contractionTk of TOPT. For convenience, letT = TOPT

and assume thatT is binary, without loss of generality.

Algorithm k-Bin Contraction(T ).

1. RootT at an arbitrary internal vertex. LetT (v) denote the subtree ofT rooted atv.
2. TraverseT , beginning at the root, such that for each vertexv visited:
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If |T (v)| < 6n/k then

• contract all internal edges ofT (v),
• labelv as a bin root and
• continue traversal atv’s parent.

Otherwise, continue traversal at an unvisited child ofv.

3. For each bin rootv with parentv′ and siblingu′:
If |T (v)| � 3n/k andu′ has a childu with |T (u)| � 3n/k then

• transfer the leaves inT (u) to the bin ofv,
• contract{u,u′}, and
• contract{u′, v′}.
4. For each leafu of T not assigned to a bin, bisect the edge betweenu and its parent with

a new vertexv, and markv as a bin root.

The last step of the algorithm is necessary since a leaf cannot be a bin root.

Theorem 4.1. There is ak-bin contraction ofTOPT.

Proof. Let Tk be the tree produced by thek-bin contraction algorithm. It is shown thatTk

satisfies both properties that ak-bin decomposition must satisfy (see Definition 4.1).

Property 1 (Bounded Bin Size). Call a bin ofTk small if it has size less than 3n/k. A bin
root is small if its bin is small. Call a bin ofTk is large if it has size between 3n/k and
6n/k, inclusive. A bin root islarge if its bin is large. Letsbindenote the number of sma
bins inTk andlbin the number of large bins inTk .

The following lemma is required:

Lemma 4.1 [15]. sbin< 2lbin.

Proof. We prove the following by induction: For everyh, if u is a vertex of heighth and
is not a bin root then the lemma holds for the subtreeT (u).

For the base case, assume thatu has childrenp andq . It cannot be that bothp andq are
small otherwise|T (u)| < 6n/k and the algorithm would not have visitedp andq . Hence,
the lemma is true forT (u).

In general, assume thatu has childrenp and q . If both p and q are bin roots then
the argument for the base case applies. If neitherp nor q are bin roots then the inductiv
hypothesis applies toT (p) andT (q), and hence the lemma holds forT (u). Otherwise,
suppose thatp is not a bin root butq is.

If q is large then the induction can be applied toT (p) and the claim follows. Otherwise
suppose thatq is small. Letp1 andp2 be the children ofp. Neitherp1 nor p2 are small,
since otherwise the algorithm would have merged one ofT (p1) andT (p2) with T (q) in
step 3. By the inductive hypothesis,sbin1 < 2lbin1 andsbin2 < 2lbin2 wheresbin1, lbin1,
sbin2, andlbin2 are the numbers of small and large bins inT (p1) andT (p1), respectively.
It follows thatsbin1+sbin2+1 < 2(lbin1+ lbin2), and hence the claim holds forT (u). �
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Fig. 7. Case 2.

Fig. 8. Case 3.

Since each large bin ofTk has size at least 3n/k, lbin � k/3. Tk haslbin + sbin bins,
and so,lbin + sbin< lbin + 2lbin = 3lbin � k, by Lemma 4.1. We conclude thatTk has
less thank bins each with size bounded by 6n/k.

Property 2 (Edge Preservation). Let e be an edge ofTOPT. If the algorithm does no
contracte then there is an edgee′ in Tk such thats(e, e′) = n and we are done. Hence, no
consider only edges ofTOPT that have been contracted.

There are three cases to be considered. These three cases are depicted in Figs.
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In the first case,e is part of a subtree that is contracted to form a bin with bin roov.
Let e′ be the edge fromv to v′ parent inTk . Referring to Fig. 6,e = (A,B ∪ C) and
e′ = (A ∪ B,C). Since|B| � 6n/k, it follows thats(e, e′) � n − 6n/k.

In the second case,e is an edge, as depicted in Fig. 7, that is contracted in step
the algorithm to form a bin with bin rootv. Let e′ be the edge from the parent ofv to the
grandparent ofv. Referring to Fig. 7,e = (A ∪ B1,B2 ∪ C) ande′ = (A ∪ B1 ∪ B2,C).
Since|B2| � |B1 ∪ B2| � 6n/k, it follows thats(e, e′) � n − 6n/k.

In the third case,e is an edge, as depicted in Fig. 8, that is contracted in step 3 o
algorithm to form a bin with bin rootv. Let e′ be the edge fromv to the parent ofv.
Referring to Fig. 8,e = (A ∪ B2 ∪ B3 ∪ B4 ∪C,B1) ande′ = (A ∪C,B1 ∪ B2 ∪ B3 ∪ B4).
Since|B2 ∪ B3| � |B1 ∪ B2 ∪ B3 ∪ B4| � 6n/k, it follows thats(e, e′) � n − 6n/k. �

We also need that ak-bin contraction ofTOPT be a good approximation ofTOPT:

Theorem 4.2. There is ak-bin contractionTk of TOPT such thats(Tk,R) � s(TOPT,R) −
(6/k)mn whereR is an instance ofFCC with label setS, m = |R|, andn = |S|.

Proof. Let Tk be ak-bin contraction ofTOPT. Then for each edgee′ of TOPT there is
an edgee′ of Tk such thats(e, e′) � n − 6n/k. It follows that for each(A,B) ∈ R,
s(Tk, (A,B)) � s(TOPT, (A,B)) − 6n/k. As there arem bipartitions inR, s(Tk,R) �
s(TOPT,R) − (6/k)mn. �
4.2. A PTAS for LBA

Let R = {(Ai,Bi) | 1 � i � m}, S andK be an instance of theLBA problem whereK
hask leaves.̂T is an optimal completion ofK if T̂ maximizess(T̂ ,R), over all completions
of K. To formalize this optimization problemsmooth polynomialsare used. A degreed
polynomialp(x) is t-smooth, wheret is a constant, if the coefficient of each degreei term
is in the interval[−tnd−i , tnd−i], for 0� i � d .

Define the 0–1 label-to-bin assignment with variablesx = (xvb) as follows:

xvb = 1 if labelv is assigned to binb, otherwisexvb = 0.

To ensure that each labelv ∈ S is assigned to one bin the following constraints
created for each labelv:∑

b

xvb = 1.

In order to evaluates(T ′,R), whereT ′ is the completion ofK specified by the label
to-bin assignmentx = (xvb), it is necessary to assign bipartitions(Ai,Bi) in R to edgese
of K so thats(e, (Ai,Bi)) can be evaluated. To this end, define the 0–1 bipartition-to-
assignment with variablesy = (yie) as follows:

yie = 1 if (Ai,Bi) is assigned to edgee of T , otherwiseyie = 0.
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To ensure that each bipartition is assigned to one edge the following constrain
created for each bipartition(Ai,Bi):∑

e

yie = 1.

Create the following polynomial for each(Ai,Bi) ∈ R:

pi(x, y) =
∑

e=(A,B)∈K

yie

( ∑
v∈Ai

∑
a∈A

xva +
∑
v∈Bi

∑
b∈B

xvb

)
.

Sinceyie = 1 for exactly one edgee = (A,B) ∈ K,

pi(x, y) =
∑

v∈Ai, a∈A

xva +
∑

v∈Bi, b∈B

xvb = s
(
e, (Ai,Bi)

)
.

Finally, definep(x, y) = ∑
1�i�m pi(x, y). The optimal value forp(x, y) is then

s(T̂ ,R).
In summary, our optimization problem is to find a 0–1 label-to-bin assignmentx and a

0–1 bipartition-to-edge assignmenty so that

p(x, y) is maximized,∑
b

xvb = 1, for each labelv,

∑
e

yie = 1, for each bipartition(Ai,Bi),

∑
v

xvb � 6n/k, for each binb.

Observe thatp(x, y) is a degree 2 polynomial and it is 1-smooth. Furthermore,p(x, y)

is defined onO(n + m) variables.
Arora et al. [2] present a PTAS for solvingt-smooth integer polynomial programs:

Theorem 4.3 [2]. For eachε > 0 there is a polynomial time algorithm that produces a0–1
assignmentz such thatp(z) � p(z∗) − εnd wherep(z) is a t-smooth polynomial define
onn variables with degreed and with maximum valuep(z∗).

Following from the above discussion and Theorem 4.3, we have

Theorem 4.4. For eachε > 0, there is a polynomial time algorithm that, for each instan
R andK of LBA, produces a completionT ′ ofK such thats(T ′,R) � s(T̂ ,R)−ε(n+m)2

whereT̂ is an optimal completion ofK.

4.3. Summary of the approximation algorithm and an interesting caveat

We summarize the PTAS that approximates an optimal solutionTOPT to an instance
R of FCC. For each kernelK on k leaves (for sufficiently largek) an approximately
optimal completion ofK is found using the PTAS forLBA. Let TAPX be the completion
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that maximizess(TAPX,R). It follows that s(TAPX,R) � s(T ′,R) where T ′ is the
approximately optimal completion of the kernelK of Tk andTk , is a k-bin contraction
of TOPT.

By Theorem 4.4,s(T ′,R) � s(T̂ ,R) − ε(n + m)2 whereT̂ is the optimal completion
of K, for anyε > 0. We also have thats(T̂ ,R) � s(Tk,R) ands(Tk,R) � s(TOPT,R) −
(6/k)mn by Theorem 4.2. Thus we have

s(TAPX,R) � s
(
T̂ ,R

) − ε(m + n)2 � s(TOPT,R) − (6/k)mn − ε(m + n)2.

At this point a lower bound ons(TOPT,R) is established using the following lemma:

Lemma 4.2. If (A,B) and (C,D) are bipartitions ofS wheren = |S| then s((A,B),

(C,D)) � n/2.

Proof. Since,|A∩C|+ |A∩D|+ |B ∩C|+ |B ∩D| = n, either|A∩C|+ |B ∩D| > n/2
or |A ∩ D| + |B ∩ C| � n/2. �

Lemma 4.2 leads directly to the lower bounds(TOPT,R) � mn/2. Now our caveat, if
m = Θ(n) then the following theorem is immediate:

Theorem 4.5. For eachε > 0, there is a polynomial time algorithm that, for each instan
R of FCC, produces a treeTAPX such thats(TAPX,R) � (1− ε)s(TOPT,R).

The requirement thatm = Θ(n) is natural. Since an evolutionary tree hasn − 3
nontrivial edges, it is expected that onlyO(n) estimated bipartitions will actually b
informative.

5. Conclusions

This paper introduces theFCC criterion for branch selection, justifies the use of t
criterion and then provides a PTAS for solving the branch selection problem usin
FCC criterion. Some final comments are warranted:

• A weighted version of theFCC criterion can be obtained by assigning a weight to eac
bipartition. Weights arise naturally in practice:
– Hypercleaning produces a list of bipartitions ranked by support. It is then prefera

to select bipartitions with the highest weightedFCC score.
– Given a collection of estimatesT1, T2, . . . , Tk of the unknown evolutionary treeT , the

weight of a bipartition(X,Y ) is the percentage of these estimates containing(X,Y ).
The weightedFCC score would prefer high frequency bipartitions.

The PTAS presented here can easily be extended to the weighted version ofFCC.

• The results presented here are algorithmic in nature. To obtain a practical tool for bran
selection, further work is required. First, efficient implementations of algorithms
approximating smooth polynomial integer programs are required in order for the
to be effective. Second, theFCC criterion must be demonstrated as being biologic
relevant through experimentation or simulation.
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