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Gene recognition is essential to understanding existing and future DNA sequence data. CRITICA (Coding Region
Identification Tool Invoking Comparative Analysis) is a suite of programs for identifying likely protein-coding
sequences in DNA by combining comparative analysis of DNA sequences with more common noncomparative
methods. In the comparative component of the analysis, regions of DNA are aligned with related sequences from
the DNA databases; if the translation of the aligned sequences has greater amino acid identity than expected for
the observed percentage nucleotide identity, this is interpreted as evidence for coding. CRITICA also incorporates
noncomparative information derived from the relative frequencies of hexanucleotides in coding frames versus other
contexts (i.e., dicodon bias). The dicodon usage information is derived by iterative analysis of the data, such that
CRITICA is not dependent on the existence or accuracy of coding sequence annotations in the databases. This
independence makes the method particularly well suited for the analysis of novel genomes. CRITICA was tested
by analyzing the available Salmonella typhimurium DNA sequences. Its predictions were compared with the DNA
sequence annotations and with the predictions of GenMark. CRITICA proved to be more accurate than GenMark,
and moreover, many of its predictions that would seem to be errors instead reflect problems in the sequence
databases. The source code of CRITICA is freely available by anonymous FTP (rdp.life.uiuc.edu in /publ/critica)

and on the World Wide Web (http://rdpwww.life.uiuc.edu).

I ntroduction

The recent publication of complete genome se-
quences for several organisms (e.g., Fleischmann et al.
1995; Fraser et a. 1995; Bult et a. 1996; Himmelreich
et a. 1996; Kaneko et a. 1996; Blattner et al. 1997)
raises the question of whether the tools for sequence
analysis are keeping pace with the data. One deceptively
simple problem is that of how to identify the protein-
coding regions of DNA sequences even in the absence
of introns. Doing so requires accurate recognition of
those genomic sequences most consistent with protein
coding and the choice of the appropriate translation start
and end points.

Numerous approaches to identifying coding se-
quences have been proposed (for areview of early work,
see Fickett and Tung 1992; more recent work includes
Borodovsky and Mclninch 1993; Gish and States 1993;
States and Gish 1994; Snyder and Stormo 1995; Gel-
fand, Mironov, and Pevzner 1996; Uberbacher, Xu, and
Mural 1996; Burge and Karlin 1997; Salzberg et al.
1998). On the simplest level, DNA sequences are often
analyzed by looking for open reading frames (ORFsS),
which are a series of coding triplets uninterrupted by a
terminator codon. Typically, an ORF capable of produc-
ing a peptide of at least 60—75 amino acids is retained.
Although this approach has the advantage of making
few assumptions about the nature of coding DNA, it
misses genes encoding proteins shorter than the 60—75-
amino-acid threshold; yet, even when the threshold
length is set this high, the analysis produces a significant
number of false-positive ORFs that occur by chance
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aone (particularly in G+C-rich DNA). Another com-
mon problem is ambiguity as to which triplet is the ac-
tual initiator codon.

More sensitive approaches to protein prediction ex-
ploit the fact that an absence of terminators is not the
only nonrandom property of coding sequences. In par-
ticular, the use of synonymous codons is generally bi-
ased (Staden and McLachlan 1982), and even more so
is the use of dicodons, hexamer DNA sequences defin-
ing adjacent codons (Claverie and Bougueleret 1986).
Analyses based on dicodon usage and a related measure
based on a fifth-order Markov model of sequences (Bor-
odovsky and Mclninch 1993) are among the most pow-
erful current methods for defining the coding regions of
a new DNA sequence.

Other approaches to identifying coding framesin a
DNA sequence are based on comparative analysis. If a
nucleotide sequence can be trandlated to yield a product
with significant similarity to a known protein, then that
DNA is reasonably assumed to be protein-coding in the
chosen frame (Gish and States 1993). Analysis using the
BLASTX program (Gish and States 1993) depends on
a database of previously defined proteins and therefore
cannot find genes that encode new types of proteins. In
contrast, the TBLASTX program (W. Gish, unpub-
lished), which relies only on a DNA sequence database
trandated in all six reading frames, identifies DNA se-
quences that would make similar proteins but does not
directly distinguish between those that are protein-cod-
ing and those that are merely similar DNA sequences.
Recently, an algorithm similar in spirit to BLASTX was
developed for the analysis of intron-containing sequenc-
es (Gelfand, Mironov, and Pevzner 1996). First, all pos-
sible exons in the sequence being analyzed are com-
piled, then the hypothetical proteins resulting from the
various possible splicings are compared against a data-
base of known proteins. The splicing that yields a pro-
tein most similar to a known protein in the database is



assumed to be the correct one. Again, this method de-
pends on the presence and accuracy of protein homologs
in the databases.

We have developed a new method for identifying
coding DNA. Its novelty lies in comparing query DNA
sequences to related DNA sequences from other species
to find those regions of DNA in which the encoded ami-
no acids display more sequence identity than would be
expected from the observed amount of DNA sequence
divergence. Such excess identity provides evidence of
amino acid conservation and, hence, translation. The
method does not rely on the annotation of any of the
sequences in the DNA data banks; hence, it is particu-
larly well-suited for the analysis of novel genes and ge-
nomes. Because it incorporates comparative analysis,
the method’s value and accuracy increase with increas-
ing DNA data.

In this paper, we describe CRITICA (Coding Re-
gion Identification Tool Invoking Comparative Analy-
sis), a set of programs that implement this approach. We
evaluated it by analyzing the DNA sequence data avail-
able from Salmonella typhimurium, comparing CRITI-
CA's predictions with the corresponding database an-
notations and with the coding regions suggested by sim-
ilarity searches using BLASTRP. We aso compare CRI-
TICA's performance to that of GenMark (also called
GeneMark; Borodovsky and Mclninch 1993), perhaps
the most widely used and accurate alternative currently
available.

The CRITICA Algorithm
Rationale

The problem to be solved is one of finding regions
in a DNA sequence with high “evidence of coding.”
CRITICA uses four steps to analyze a given DNA se-
guence (the query): (1) Give each trinucleotide (triplet)
in the DNA anumerical score based on how much more
it resembles a codon in a coding sequence than it resem-
bles a triplet in a noncoding region. This score is (usu-
aly) the sum of two components. a comparative score
based on the relative identities of the nucleotides and
the corresponding potential amino acids, and a honcom-
parative score based on dicodon bias in coding frames.
(2) Identify regions of sequence that have higher-than-
random scores for coding. (3) Extend the candidate cod-
ing region to a terminator codon or to the end of the
query sequence. (4) Examine the effect of choosing each
of the available initiator codons by incorporating an ini-
tiator codon preference score and a score for any poten-
tial Shine-Dalgarno sequence (ribosome-binding site). If
the resulting overall evidence of coding is sufficiently
high, the DNA sequence is predicted to be coding. Each
of these steps is considered in more detail below.

Assessing Comparative Evidence for Coding

To understand comparative evidence of coding,
consider DNA sequences A and B, stemming from a
common ancestral sequence. Subsequent to their sepa-
ration, the A and B lineages have independently accu-
mulated nucleotide changes. If these sequences do not
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code for protein, then the sites of nucleotide substitu-
tions should be distributed randomly with respect to
coding potential; that is, there will be no special con-
servation of conceptual translation products. If, on the
other hand, the sequences encode a protein, excess iden-
tity of the amino acids may be observed, which can then
be taken as evidence of translation. To carry out the
analysis, DNA sequences that are similar enough to the
query sequence to be probable homologs are first found
and aligned. The aligned triplets in the sequences are
then analyzed in terms of percentage identity of nucle-
otides versus percentage identity of coded amino acids.

CRITICA uses the BLASTN program (Altschul et
a. 1990) to locate sequences in a DNA database that
are sufficiently similar to the query as to be likely ho-
mologous. The BLASTN search parameters E and E2
(expected number of randomly matching sequence seg-
ments) are typically set to 10-4. Following removal of
matches to the query organism, the remaining local
alignments (the high-scoring segment pairs [HSPS]) pro-
duced by BLASTN are used directly. The fact that these
alignments do not include alignment gaps is an advan-
tage, because the comparative detection of coding (be-
low) assumes a consistent relative reading frame in the
aligned DNAs. A typical BLASTN alignment of related
DNA sequences from S typhimurium and Pasteurella
haemolytica is shown in figure 1A.

Given one of the alignments from the preceding
step (fig. 1A), we test the hypothesis that the locations
of sequence changes are not related to coding potential.
The analysis is carried out in each of the six possible
trandation frames (three forward and three reverse), al-
though only one is shown. First, the aligned sequences
are broken into triplets (fig. 1B), and the differences in
the DNA sequences of the aligned triplets are counted
(fig. 1C). For each triplet, the encoded amino acid is
determined (fig. 1D), and the locations of differences
are noted (fig. 1E). From these observations, a score that
summarizes the contribution to coding evidence is as-
signed to each triplet (fig. 1F).

In general, identical aligned triplets are assigned a
score of zero, since they will always encode identical
amino acids and, hence, can carry no comparative in-
formation about coding. A positive coding scoreisgiven
to aligned triplets that are synonymous, such as TTC
and TTT (phenylaanine) or CTA and TTG (leucine). To
compensate for positive scores arising from the random
occurrence of synonymous triplets, a negative score
must be assigned to aligned triplets encoding different
amino acids, that is, nonsynonymous codons such as
CAG (glutamine) and CAT (histidine). The random
probabilities of coding the same amino acid, averaged
over al pairs of the 61 coding triplets weighted equally,
for triplets that differ by zero, one, two, or three nucle-
otides are listed in table 1. This equal weighting is an
appropriate model for the S. typhimurium DNA analyzed
in this paper (which has a G+C content very close to
50%), but might be productively modified for organisms
with highly biased G+C contents. The random chance
of coding the same amino acid is much lower when
more nucleotides differ. Therefore, synonymous triplets
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A aligned DNA: S. typ.
P. hae.

B aligned triplets: S. fyp.
P. hae.

C differences per triplet:

D encoded amino acids: S. fyp.

P. hae.
amino acid comparison:
comparative evidence score:

combined evidence score:

E
F
G dicodon frequency score:
H
I  comparative running total:
J

combined running total:

.. . TTTCGCCAATTGATTCAGGTA. . .
. . TTCAAACAACTAGTCCATTTA. ..

TTT CGC CAA TTG ATT CAG
TTC ARA CAA CTA GTC CAT

1 3 0 2 2 1 1

F R Q L 1 Q V
F K Q L Vv H L

same diff. same same diff. diff. diff.
52 -14 0 164 -16 -36 -36
-21 -6 -79 33 37 33 8
3t =20 -79 197 21 -3 -28
52 38 38 202 186 150 114
31 1 0 197 218 215 187

Fic. 1.—Elements of the analysis of evidence for coding performed by CRITICA. A, BLASTN is used to align an Salmonella typhimurium
DNA sequence (part of the coding region for catabolite activator protein [CAP]) with a related sequence from Pasteurella haemolytica. B, The
aigned sequences and their complements are broken into triplets representing the six possible coding frames, only one of which is shown. C,
The number of nucleotide differences per aligned triplet is determined. D, The triplets from each sequence are trandated. E, The locations of
amino acid differences in the conceptual translation products are noted. F, A comparative-evidence-of-coding score is assigned to each triplet
based on the number of nucleotide differences and the conservation or nonconservation of the encoded amino acid. The scores shown are for
32 informative triplets (see table 2 and the text). G, A dicodon frequency (noncomparative) score is assigned to each triplet based on the relative
frequency with which the given triplet follows its preceding triplet in coding frames versus noncoding contexts (eq. 1). To get the first score on
the left, it is necessary to know that the preceding triplet is AAA. H, The comparative and noncomparative scores are added for each triplet. I,
A running total of the comparative scores is taken, or (J) a running total of the combined scores is taken. The tota is not allowed to a go below

zero.

differing at two or three positions are more informative
and will receive more emphasis in the scoring than syn-
onymous triplets differing by one nucleotide.

Altschul (1993) pointed out that for analyses of this
type, alog-odds score has favorable properties. Thiswas
also recognized by Snyder and Stormo (1995) in their
coding region identification program. In the current con-
text, we define the coding evidence due to two aigned
triplets as the logarithm of the probability of finding this
combination of triplets in a coding frame divided by the
probability of finding these triplets aligned in a noncod-
ing frame. Unfortunately, it is not possible to directly
compute these values, since they depend on several fac-
tors, including the degree of protein sequence diver-
gence in each real coding frame. In principle, anh em-
pirical compilation of these frequencies would be pos-
sible, but there is no reason to believe that these could
be generalized, because different organisms have differ-
ent codon usage, and different genes have different ex-
tents of divergence. Given these limitations on finding
an “‘optimal”” solution, we created several scoring ma-
trices (table 2) that differ in the assumed amount of se-

Table1

Probabilities of Trinucleotide Sequences with a Given
Number of Differences Coding the Same or a Different
Amino Acid

Number of Probability of Probability of
Nucleotide Coding the Same Coding Different
Differences Amino Acid Amino Acids
[0 B 1.000 —
1. 0.255 0.745
2 0.018 0.982
3 0.008 0.992

NoTe.—It is assumed that all nucleotides are equally likely and that al
nucleotide differences are equally likely. Terminator codons are excluded.

quence divergence (Altschul 1993). In essence, each ma-
trix was heuristically constructed to detect coding within
a region containing a specific number of informative
triplets (8, 16, 32, 64, or 128; see appendix). Thus, the
matrix called “8"” is optimized for a few informative
triplets with very high amino acid conservation, while
the matrix called ‘128" is optimized for many infor-
mative triplets with only a small excess of amino acid
conservation. For each query sequence, CRITICA per-
forms the comparative scoring with each of the five ma-
trices, keeping alignments that are significant for any of
these matrices. The example in figure 1F uses the matrix
for 32 informative triplets.

An additional consideration was how to combine
the comparative evidence scores when BLASTN align-
ments (HSPs) from multiple database sequences cover
the same region of the query. In a Bayesian approach,
independent probabilities are multiplied, or, equivalent-
ly, their logarithms are added. But in the present case,

Table 2
Comparative Scores for Aligned Triplets

SCORE FOR ALIGNED TRIPLETSWITH O, 1, 2,

OPTIMAL OR 3 NUCLEOTIDE DIFFERENCES
NUMBER 1 2 3
OF
TRIP- Same Differ- Same Differ- Same Differ-
LETS® 0 a® entaa aa entaa aa ent aa
8..... 0 76 —-99 218 —48 243 —-28
16..... 0 65 —-59 197 -31 230 —22
32..... 0 52 -36 164 -16 207 -14
64..... 0 41 —-23 141 -10 171 -7
128..... 0 32 -16 108 -5 135 -4

a2The scores in each row are chosen to assess coding in a region containing
the given number of aligned triplets with one or more nucleotide differences.

b Score assigned if the aligned triplets encode the same amino acid.

¢ Score assigned if the aligned triplets encode different amino acids.



the sequences found by BLASTN are generally related
to one another, since they are each related to the query.
Therefore, the nucleotide differences might not be in-
dependent, and their scores cannot always be added. In
CRITICA, each HSP from BLASTN is scored separate-
ly, and then the nonzero comparative scores for a given
triplet in the query are averaged. This simple compro-
mise minimizes the required bookkeeping; however, if
the independence of the nucleotide differences within a
triplet for the various HSPs were assured (e.g., changes
to different nucleotide identities or changes at different
codon positions), adding these scores, rather than aver-
aging them, would be more sensitive.

Assessing Noncomparative Evidence for Coding

Because there is additional useful information in
codon usage patterns (and we wish to analyze sequences
that lack identifiable homologs and, hence, comparative
information), we also incorporate noncomparative infor-
mation into our analysis through a version of the dico-
don method (Claverie and Bougueleret 1986). If the trip-
lets are numbered along the sequence, then triplet i is
assigned an integer-valued score (Syicodon) that is a func-
tion of the sequence of triplet i (t;) and the sequence of
the preceding triplet (t;_,):

o i fcoding(ti Iti—l)
SﬂiCOdon(ti' tiil) B nlnt<a)\cln( fnoncoding(ti |til))>’ (1)

where fcodi ng(ti | ti—1) and 1:noncodi ng(ti | ti—1) are the frequen-
cies of triplets of sequence t; in coding and noncoding
contexts, respectively, given that the preceding triplet is
of sequence t;_;. A¢ is used to scale the log-odds scores
from equation (1) so that they can be combined with the
comparative scores from table 2. It is the N parameter
from Karlin and Altschul (1990; see below for details)
for an analysis based solely on comparative scores. Its
value is calculated for the given genome and compara-
tive scoring matrix (as defined by a row in table 2), but
is generally close to 0.015. The parameter « is an em-
pirically evaluated factor slightly smaller than one (see
Results) that helps compensate for the fact that the di-
codon scores assume that the sequence of triplets as the
outcome of a first-order Markov process, whereas Kar-
lin-Altschul statistics assume a series of independent
scores. Scores are rounded using nint, the *‘nearest in-
teger” function. Figure 1G shows the dicodon scores for
the example query sequence. When used, the noncom-
parative score for each triplet is added to the correspond-
ing comparative scores (fig. 1H).

Since our goal is to analyze novel sequences, we
have chosen to work without using any of the available
annotations. We use an iterative approach. Initialy, only
reading frames with significant comparative evidence
are explicitly called coding, leaving much of the se-
guence data unclassified—a mixture of coding and non-
coding DNAs. In the first cycle of dicodon analysis,
CRITICA uses the observed dicodon frequencies in the
regions explicitly called coding and a user-supplied, a
priori estimate of the fraction of the DNA that is coding
to estimate the number of occurrences of each dicodon
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in al coding regions (G. D. Pusch, personal communi-
cation). The difference between the total occurrences of
a dicodon (hexanucleotide sequence) in the DNA data
and the estimated number of occurrences in all coding
regions provides the number (and, hence, frequency) in
noncoding regions. In all subsequent iterations, all se-
quences are explicitly classified as coding or noncoding
by CRITICA's calls in the previous iteration, so there is
no further use of the user's a priori estimate of the frac-
tion of the DNA that is coding.

Finding Regions with Statistically Significant Evidence
of Coding

Given the evidence of coding for each triplet, we
now seek regions of sequence sufficiently high in coding
support to declare the behavior nonrandom and, thus,
the sequence probably coding. This problem is related
to other well-studied problems to which the method of
maximal segment analysis has been applied (e.g., Karlin
and Altschul 1990, 1993). To start, we take a running
total of the evidence of coding (fig. 11 and J), not al-
lowing the total to go below zero. A high-scoring seg-
ment (HSS) in this nonnegative running total, being a
region enriched in coding evidence, starts with a step
up from zero and ends with the maximum value reached
before either (1) the running total declines back to zero,
(2) the query sequence contains a triplet that would be
a stop codon, or (3) the end of the query sequence is
reached. Functionally, this results in the identification of
all HSSs defined as arbitrary contiguous segmentsin the
query sequence that do not contain any stop codons and
that have been extended through either end point as far
as possible by adding on triplets of positive or zero
score. An HSS can contain triplets of negative score if
this permits adding an equal or greater amount of pos-
itive scores. Each end of an HSS is bounded by a codon
pair of negative score, the beginning or end of the query
sequence, or a stop codon.

Karlin and Altschul (1990) provide formulas for
assessing the statistical significance of an HSS under the
assumption that the scores at each site (in this case, each
triplet) are assigned independently from a fixed proba-
bility distribution. One can then compute two parame-
ters (K and \) that define the approximate distribution
of the largest score among al of the HSSs contained in
a sequence of length N. The theoretical distribution of
the largest score is used to assign P values to individual
HSSs. The probability that one or more intervals will
have a score of S or greater is approximately

P(S) = 1 — e kne™, @)

For the comparative component of an analysis, cal-
culating K and \ requires the random probabilities and
scores for each of the seven outcomes in table 1. The
probabilities of aligned triplets with zero, one, two, and
three nucleotide differences are estimated from their ob-
served frequencies in the BLASTN HSPs. Because the
BLASTN aignments for a short individua query se-
guence sometimes have few sites with changes, we
dampen the sampling variations by adding a fixed num-
ber of triplets with the average balance of nucleotide
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differences (36, 9, 4, and 1 for O, 1, 2, and 3 differences,
respectively) observed in our preliminary analyses of
bacterial DNA sequences. For a given number of dif-
ferences, the random probabilities of encoding the same
or adifferent amino acid are taken from table 1, and the
associated score is taken from the appropriate row of
table 2. For example, for the query sequence in figure
1, the probability that the aligned triplets differ by one
nucleotide was estimated to be 0.18. For sites with ex-
actly one nucleotide difference (as in the first pair of
triplets), the random probability of the triplets being
synonymous is 0.255 (table 1). Thus, at random, about
0.0459 (0.18 X 0.255) of all triplets would be aligned
with a synonymous triplet that differs by one nucleotide.
If the analysis were for the 32-informative-triplet matrix,
then the associated score (from table 2) would be 52.
The value of N computed for a comparative analysis
encompassing all of the sequences to be analyzed from
a given genome is called A\ and is subsequently used
to scale the dicodon scores (above) and the initiator co-
don and Shine-Dalgarno sequence scores (below).

For the noncomparative (dicodon) component of an
analysis, there are 4,096 (64 X 64) combinations of ad-
jacent triplets. The probability of a specific dicodon is
estimated from the empirical frequencies of the se-
quence in noncoding contexts (which is possible only
after the first round of comparative analysis). For ex-
ample, the frequencies of TTT preceded by AAA in S
typhimurium DNA are 0.000281 in coding sequences
and 0.000417 in noncoding sequences. The correspond-
ing score from equation (1) is —21 (if A¢ = 0.015 and
a = 0.8).

When simultaneously anayzing both comparative
and dicodon information, calculating K and \ requires
the random probabilities and scores for all 28,672 (7 X
4,096) combinations of possible comparative and dico-
don outcomes. For the above examples, the combined
event (@ TTT triplet aligned with a synonymous triplet
that differs by one nucleotide and preceded by a AAA
triplet) has a random probability of 1.91 X 10-5 (0.0459
X 0.000417), and its score is 31 (52 + —21).

Whether for comparative analysis or for combined
comparative and dicodon analysis, CRITICA computes
the values of K and A for each combination of query
sequence and scoring matrix, allowing for different
amounts of comparative data. However, to provide more
uniform behavior for query sequences of different
lengths, the assumed number of events, N, is held at a
constant value of 2,000, the approximate number of trip-
lets analyzed per gene. For each region of coding evi-
dence, if the P value for the score (eq. 2) is less than a
predefined threshold for any of the five matrices, then
the region is considered potentially significant and is
kept for further processing. Otherwise the region is dis-
carded.

Adjusting the Ends of Potential Coding Regions

A region of coding evidence ends with the last pos-
itive evidence for coding. However, in the absence of
introns, real coding regions end at stop codons. There-
fore, we extend the 3’ (C-terminal) end of each potential

coding region to a stop codon or the last complete codon
in the query sequence, whichever comes first, and adjust
the score of the region to include these triplets.
Similarly, a region of coding evidence starts with
the first positive evidence for coding, while real coding
regions start with initiator codons. This situation is more
complicated because, unlike stop codons, initiator co-
dons also serve a function within a coding sequence.
Therefore, the problem is deciding which potential ini-
tiator codon to use or whether to extend the region up-
stream to the first complete codon of the query. If a
region is extended upstream, additional triplets and as-
sociated scores are added to the coding region; if a
downstream initiator is chosen, triplets and associated
scores are removed. The score is also adjusted for the
sequence of the initiator triplet (t = ATG, GTG, or
TTG). The log-odds score for an initiator triplet of iden-

tity tis
— cinel L[ finitiator(®)
Snitiator(t) - nlnt<)\cln( f(t) ))! (3)

where fiiia0r(t) s the frequency of triplet t among al
initiators, and f(t) is the fraction of triplet t among all
ATG, GTG, and TTG triplets in the sequences being
analyzed.

The score for a potential start site is aso adjusted
to reflect the quality of a Shine-Dalgarno sequence (ri-
bosome binding site; Shine and Dalgarno 1974) when
such a sequence is present. For this purpose, a Shine-
Dalgarno sequence is defined as 4 or more contiguous
nucleotides starting within 16 nucleotides upstream of
the initiator that match a subsequence of the consensus
sequence RGGRGGTGAT (where R = A or G; Shine
and Dalgarno 1974). The score assigned to a Shine-Dal-
garno sequence s is

(1 [ fw(S)
Su(s) = nmt()\cln( t9 )) 4

where f(9) is the frequency of s being the longest match
to the Shine-Dalgarno consensus in sequences adjacent
to each highest-scoring translation start site and f(s) is
the frequency of s being the longest match to the con-
sensus when analyzing other plausible, but lower scor-
ing, start sites. In this context, the score of a translation
start site refers to the score of the region after adjusting
the start point to the given initiator codon but without
the adjusting for the Shine-Dalgaro score. To limit the
region evaluated for Shine-Dalgarno sequences to the
most plausible locations, we consider only start posi-
tions that would yield a coding score with a P value
within two orders of magnitude of the P value associated
with the highest-scoring start position (before consid-
ering the Shine-Dalgarno sequence). The lack of a ri-
bosomal binding site is treated in an analogous manner;
the score is based on the frequency of no ribosome-
binding site occurring at high-scoring starts divided by
the frequency of this condition at lower-scoring starts.
Thus, for each plausible start point, the score for
the region is adjusted for the change in the start point,
for the identity of the initiator, and for the quality of the




best Shine-Dalgarno sequence. The start point resulting
in the highest score is usually chosen, although we can
retain al potential starts whose scores fall within a de-
fined interval of the best. The P vaue of the resulting
score is computed according to equation (2), and the
region is retained only if the resulting value is more
significant than a defined threshold (usually a random
probability of 10-4).

There is one more essential element of CRITICA's
algorithm. Much of the comparative score of coding se-
quences is contributed by silent changes in the third po-
sition of the codon (e.g., fig. 1). Because the spacing of
third-position changes is uniform, there is also a corre-
sponding frame on the complementary strand that has
an excess of third-position changes, even though this
latter frame does not code; these must be excluded. CRI-
TICA dealswith thisin a simple manner: for each triplet
predicted to be coding, we locate the triplet on the op-
posite strand that shares the same third position and set
its comparative score to zero. This eliminates a known
source of bias, without forbidding the prediction of
overlapping reading frames. For this simple treatment to
work, it is necessary that CRITICA commit to coding-
region predictions in the order of most support to least
support.

Implementation

CRITICA was implemented as a series of ANSI-C
programs and Perl 5.0 scripts. The code has been run
on avariety of Sun SPARCstations running SunOS 5.4,
a Silicon Graphics workstation running IRIX 5.3, and
an IBM-PC-compatible (586) system running Linux 2.0.
It should be portable to any system running UNIX or a
UNIX-like operating system. BLASTN 1.4.7MP (Al-
tschul et al. 1990) was used to obtain presumptive DNA
homologs. BLASTP 1.4.8MP (Altschul et al. 1990) was
used to find proteins similar to potential gene products.
GenMark (Borodovsky and Mclninch 1993) and the S
typhimurium fifth-order matrix were kindly supplied by
M. Borodovsky.

Results
Defining the Test Data

To test the algorithm, we used CRITICA to predict
protein-coding regions in S. typhimurium DNA. This or-
ganism was chosen because there are many sequences
available (GenBank 100 has 523 S typhimurium se-
quences, totaling 946,808 nt), and most of these data
have at least one likely homolog el sewhere in GenBank.

For each S typhimurium sequence, we used the
BLASTN program (Altschul et al. 1990) to retrieve a
set of similar sequences from GenBank. We accepted
sequence matches for which each region of similarity
(HSP) had a random expectation (E = E2) of 104 or
less; therefore, we expect few false positives in the
search of the 523 S. typhimurium sequences. Tenfold
variations in this threshold had little overall effect on
our results (results not shown).

In these studies, we discarded matches to S. typhi-
murium (the query organism), since self-similarity is un-
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informative to CRITICA. However, this approach to the
problem is less than optimal in that it also discards po-
tentially useful information from similarities to other
members of a gene family within the query organism
(paralogs). After removing the matches to S typhimu-
rium, one or more BLASTN matches covered 689,278
of the 946,808 query nucleotides.

Using Comparative Data to Estimate Dicodon and
Initiator Codon Usage Frequencies

One of the decisions made in designing and imple-
menting CRITICA was to ignore sequence annotations,
the inference of dicodon usage in coding regions is
based on CRITICA's coding predictions alone. At the
beginning of CRITICA's analysis, there are no dicodon
or initiator codon scores, but the score-based prediction
method used allows inference based solely on compar-
ative evidence. For each predicted coding region in the
first cycle of the analysis, a start point (initiator codon
or first complete codon of the query) is chosen to max-
imize the length of the frame without lowering its score.
As described above, in the first iteration of a CRITICA
analysis, the estimation of dicodon frequenciesin coding
and noncoding regions involves an extrapolation from
the coding regions explicitly identified by comparative
data. In the present work, we assumed that 80% of the
S typhimurium DNA codes in one of the six reading
frames—a conservative estimate for the coding regions
in well-characterized prokaryotic genomes. Initial esti-
mates of relative initiator codon usage frequencies were
directly taken from the regions explicitly called coding
in the comparative analysis. From these data, the cor-
responding scores were derived for the following stud-
ies.

One problem mentioned earlier is that the dicodon
scores, which depend on the previous codon, are not
independent; therefore, using Karlin-Altschul statistics
may not yield a reliable estimate of the significance of
a coding region. Karlin and Dembo (1992) provide a
method for computing the significance of high-scoring
segments of Markov-dependent scores, but it is not com-
putationally feasible in our case. Instead, we explored
the issue empirically. We created a simulated sequence
of 108 codons using the Markov dicodon frequencies in
S typhimurium regions considered to be noncoding by
CRITICA. These codons were assigned CRITICA-gen-
erated dicodon scores, and the observed frequencies of
high-scoring regions were compared with those predict-
ed by Karlin-Altschul statistics (table 3). As expected,
the nonindependence of the dicodon scores causes over-
estimation of the significance of any given score. The
last column of the table shows that multiplying the log-
odds dicodon scores by 0.8 results in a conservative
estimate of the random expectation. We accomplish this
in CRITICA by setting o to 0.8 in equation (1).

Evauating CRITICA

To assess the accuracy of CRITICA's predictions,
amethod of measurement had to be chosen. Earlier eval-
uations of coding region identification methods (Fickett
and Tung 1992; Borodovsky and Mclninch 1993) tested
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Table 3

Comparison of Predicted Versus Observed Occurrences
of High-Scoring Regions Over a Given Score in a Markov
Chain of 10° Dicodon Scores

Predicted Predicted

Score P value (a = 1) Observed (a = 0.8)
500... 126 X 10! 6,284 18,278 23,145
600... 2.86 X 102 1,430 5,252 8,340
700... 6.25x 103 312 1,511 2,608
800... 136 x 108 67 414 780
900... 293 x 104 14 107 230
1,000... 6.33 X 10 3 32 67
1,100... 137 X 10°° 0 14 20
1,200... 296 x 106 0 3 6

NoTte.—The value of K for this dicodon table was 0.1425, the value of \
was 0.01532, and the value of N used for the calculated P value was 2,000.

algorithms for their ability to correctly identify segments
that were entirely coding or noncoding DNA. Because
experimentally derived data are not so neatly divided,
we chose to view the sequences in terms of all triplets
in the DNA sequence and its complement, so the num-
ber of triplets evaluated is about twice the total sequence
length. The coding predictions and the coding annota-
tions (presumed coding regions) are mapped onto the
triplets. Five outcomes are distinguished for each triplet:
(1) noncoding in both the prediction and the annotation,
(2) coding in both the prediction and the annotation, (3)
coding in the prediction and noncoding in the annotation
(false-positive), (4) noncoding in the prediction and cod-
ing in the annotation (false-negative), and (5) coding in
the prediction and coding in a different frame in the
annotation (wrong frame). This last category was distin-

Table 4

guished primarily for future exploration of frameshift
detection. To evaluate the reliability of CRITICA, we
accepted each predicted coding region in S. typhimurium
DNA that had a combined comparative evidence and
dicodon score with less than a 10~ probability of oc-
curring by chance. The results are reported in table 4.

We performed three different analyses using
GenMark (Borodovsky and Mclninch 1993). The first
GenMark analysis of the data was performed on the
WebGeneMark server (http://genemark.biology.gatech.
edu/GeneMark/webgenemark.html) on July 1 and 2,
1997. The S typhimurium matrix was selected, and the
other parameters were left at their default values (win-
dow size = 96, step size = 12, and threshold = 0.5).
The second analysis was performed using a local copy
of GenMark and a coding matrix created in 1994 (pre-
sumably from GenBank annotation, although the details
are unavailable). The third analysis was performed using
the local copy of GenMark with a matrix created by the
recently released (late 1997) utility ‘‘makemat” (W.
Hayes and J. Mclninch, unpublished), which can gen-
erate a GenMark matrix from sequence data alone, as-
suming that ORFs over a certain length (default 700
bases) represent true coding regions. In our initial as-
sessment, we compared the CRITICA and GenMark
predictions with the *‘coding sequence’” (CDS) annota-
tions in GenBank 100. In this test, WebGeneMark did
not perform as well as CRITICA, with a total error rate
of about 2.6% to CRITICA's 2.2% (table 4). Unexpect-
edly, in thisinitial test, the local copy of GenMark per-
formed better using both the 1994 matrix and the new
matrix based on the sequence data alone (2.4% total
error in both cases).

Evaluation of CRITICA and GenMark by Comparison with Presumed Coding Regions

Defined by Alternative ““Authorities”

‘“Authority” of Presumed

Coding Regions for Evaluating Prediction False False Different Total
Accuracy Method Positives  Negatives Frame Error
GenBank annotation®............... CRITICA 0.0126 0.0088 0.0005 0.0219
GenMarkd 0.0127 0.0129 0.0005 0.0260
GenMarke 0.0103 0.0130 0.0005 0.0238
GenMark' 0.0166 0.0065 0.0005 0.0235
GenBank + BLASTP ............. CRITICA 0.0026 0.0125 0.0032 0.0183
GenMark? 0.0041 0.0179 0.0032 0.0251
GenMarke 0.0032 0.0196 0.0029 0.0257
GenMarkf 0.0063 0.0096 0.0034 0.0193
GenBank + consistent BLASTP® .... CRITICA 0.0028 0.0116 0.0005 0.0149
GenMarkd? 0.0044 0.0170 0.0006 0.0220
GenMarke 0.0034 0.0184 0.0006 0.0223
GenMarkf 0.0068 0.0090 0.0007 0.0164

NoTe.—The False Positives, False Negatives, Different Frame, and Total Error values are the fractions of the nucleotide
triplets (in al six frames) for which the coding predictions of CRITICA (or GenMark) disagree with those defined by the
““authority” in the first column of the table. These analyses cover 1,893,616 overlapping triplets.

aProtein-coding sequences defined in GenBank 100 annotations.

b Protein-coding sequences defined in GenBank 100 annotations, plus open reading frames of at least 30 amino acids
that have a BLASTP match to a sequence in the NCBI nonredundant protein database. See text for additional details.

¢ The same as GenBank + BLASTR but excluding sequences with reading frames identified by BLASTP that overlap
annotated reading frames by 10 or more codons (in a different frame).

d Results from using WebGeneMark on July 1 and 2, 1997.

¢ Results from using a local copy of GenMark and a Salmonella typhimurium matrix file dated September 27, 1994.

f Results from using alocal copy of GenMark and a matrix file generated by ““makemat” on the S. typhimurium sequence

data (assuming ORFs over 700 nt are true coding regions).



Table 5

Regions in Salmonella typhimurium Sequences Predicted
to Be Coding by One or More Methods but Not
Annotated as Such in GenBank Release 100

PREDICTED REGIONS
AGREED ON BY
THE COMBINATION

OF METHODS
Including
COMBINATION OF METHODS All Consistent
PrREDICTING THE CODING REGION® BLASTP> BLASTP®
CRITICA + GenMarkd + BLASTP....... 90 85
CRITICA + BLASTP 42 41
CRITICA + GenMark 36 41
GenMark + BLASTP B, 18 13
CRITICAonly........... P 29 30
GenMarkonly ........... ... ... 24 29
BLASTPONlY. .....cooiiiiiiiie e 106 50
CRITICAtotal ...t 197
GenMark total ............... ... ..., 168
BLASTPtotal. .......ccovvviiie e 256 189
Grandtotal .............. ..., 345 289

aThe methods are said to agree if they predicted coding sequences that end
with the same terminator; selection of the same start codon is not necessary.

b Open reading frames (ORFs) of at least 30 amino acids with similarity to
an entry in the NCBI nonredundant protein database.

¢ ORFs with similarity to an entry in the nonredundant protein database and
that do not overlap any annotated S. typhimurium coding sequence in another
frame by 10 or more amino acids.

d GenMark in this table refers to the analyses performed with WebGeneMark
on July 1 and 2, 1997.

About 1.2% of the DNA triplets seemed to be er-
roneously called coding by both CRITICA and Gen-
Mark. Given the relatively conservative threshold used
in the CRITICA analysis, this seemed unreasonably
high, and even increasing the stringency of the predic-
tion threshold by orders of magnitude did not change
the predictions much (see Discussion). BLASTP (Al-
tschul et al. 1990) searches using the *‘seg” filter on the
query sequence (Wootton and Federhen 1993) often re-
vealed sequences in the NCBI nonredundant protein da-
tabase that were similar to translations of CRITICA's
and GenMark’s false positives, suggesting that there are
numerous omissions in the GenBank CDS annotations.
Applying this strategy to all S. typhimurium ORFs of 30
or more amino acids suggested as many as 256 unan-
notated coding regions (table 5). Although many of
these regions appear to be incomplete protein-coding se-
quences that run off an end of the sequenced DNA frag-
ment, some would define a complete protein-coding se-
guence. Of the 256 unannotated coding regions sug-
gested by the BLASTP searches, CRITICA identified
132 (52%), and GenMark identified 108 (42%) as cod-
ing (table 5).

The large number of sequence positions that are not
annotated as coding but for which BLASTP suggests
otherwise indicates that the quality of the annotations
might be the limiting factor in assessing the performance
of coding prediction methods. To partially relieve this
problem, we added the 256 regions suggested by
BLASTP matches to the list of presumed coding re-
gions. In each case, the starts of these | atter regions were
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adjusted without including an in-frame terminator codon
to (1) the closest upstream initiator, (2) the first complete
codon in the sequence, or (3) the closest downstream
initiator, in that order of preference. Similarly, the ends
of these regions were extended to a terminator codon or
the last complete codon in the DNA sequence. Adding
these regions to the list of those presumed to be coding
dramatically reduced the number of false positives for
CRITICA and GenMark (table 4). However, the num-
bers of false negatives and different-frame triplets were
substantially increased by this change.

Further examinations of the data revealed that of
the 256 regions added, 67 overlap (by at least 10 amino
acids) an annotated S. typhimurium coding sequence in
a different frame or another BLASTP match of higher
significance. Although overlapping coding sequences
are known, this seemed too common. Furthermore, most
of these 67 BLASTP matches were to database proteins
identified only as the products of an *““‘open reading
frame.” It seems that many of these 67 overlapping
ORFs were incorrectly identified as coding by the
BLASTP analysis. Subsequently, we treated the 67 re-
gions that overlap an annotated CDS as being ‘‘incon-
sistent” with the explicit GenBank annotations for S
typhimurium. When these regions are excluded from
consideration, there is an increase in the fraction of the
BLASTP-based reading frames that are also predicted
by CRITICA (126 of 189, or 67%) and GenMark (98
of 189, or 52%) (table 5). Removing these overlapping
ORFs from the list of presumed coding regions reduced
the false negatives and different-frame errors of both
CRITICA and GenMark (table 4).

The performance of CRITICA dlightly improved
when the dicodon usage and initiator frequency tables
were iteratively refined. The tables used above were
based on coding frames predicted from an extrapolation
of the comparative data alone (the first iteration), so the
dicodon frequencies for coding frames and for noncod-
ing sequences were somewhat crude. The second itera-
tion of the dicodon and initiator codon tables provides
a small improvement over the first, and the third itera-
tion shows no change (table 6). A similar tendency for
the results to improve and then stabilize was observed
in analyses of other genomic DNAs as well (data not
shown). In all cases that we have tested, it seems that
after one or two iterations, the limitations of our model
and test data have been reached. The recent release of
“makemat” to the public has allowed us to iterate
GenMark analyses as well (table 6). As in CRITICA,
the second iteration provides a small improvement, and
further iterations do not change the results significantly.
Unexpectedly, even the first iteration using a GenMark
matrix generated on sequence data alone yielded signif-
icantly better results than those of WebGeneMark, which
presumably used a matrix based on coding annotation.

Discussion

CRITICA provides a novel method for the identi-
fication of protein-coding sequences in genomic DNAS.
The performance of the method appears to be better than
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Table 6
Increase in the Accuracy of CRITICA and GenMark
Through Successive Approximations of Coding Properties

False Fase  Differ-
Prediction Iter- Posi- Nega- ent Total  Improve-
Method ation tives tives Frame Error ment
CRITICA... 1 0.0028 0.0116 0.0005 0.0149 —a
2 0.0029 0.0112 0.0005 0.0146 0.0003
3 0.0029 0.0112 0.0005 0.0146 0.0000
GenMark? .. — 0.0044 0.0170 0.0006 0.0220 —=a
GenMarke... 1 0.0068 0.0090 0.0007 0.0164 —a
2 00058 0.0096 0.0006 0.0159 0.0005
3 00057 0.0097 0.0006 0.0159 0.0000

NoTe—CRITICA iteration 1 is the same as that in table 4 and uses the
dicodon and initiator tables derived from the coding regions defined from com-
parative analysis only. The GenMark iterations were performed by supplying
the coding regions found in the previous iteration to *‘makemat”” and generating
a new GenMark matrix. The accuracy is evaluated relative to regions annotated
as coding in GenBank 100, plus the regions that are supported by BLASTP
matches and do not substantially overlap in a different frame an annotated CDS
in GenBank. These analyses cover 1,893,616 triplets.

aNot applicable.

> WebGeneMark.

¢Local GenMark using ‘‘makemat” -generated matrix.

that of GenMark, particularly when compared with
WebGeneMark, the version of the software most acces-
sible to the public. To date, we have used CRITICA in
our analyses of three complete genomes (Bult et al.
1996; Klenk et a. 1997; Deckert et al. 1998).

A positive feature of CRITICA is that it does not
depend on the existence or accuracy of annotations in
the databases. During the development and testing of the
program, we repeatedly encountered sequence database
problems. Coding regions that are not annotated caused
us to observe an artificially high frequency of false-pos-
itive predictions. That many of these regions are likely
to be coding was documented by identifying sequences
in the protein databases that were similar to translations
of unannotated ORFs in the S. typhimurium DNA data
(table 5); of 197 unannotated coding regions predicted
by CRITICA, 132 had BLASTP hits in the protein data
banks (of which 6 were subsequently treated as ‘‘incon-
sistent” and discarded). Since not all S typhimurium
proteins have homologs in the protein sequence data-
bases, it seems likely that the remaining 65 false-posi-
tive predictions of CRITICA include additional ORFs
that are actually coding. In this regard, we note that 36
of these 65 ‘“false-positive’’ reading frames predicted by
CRITICA were aso called by GenMark (table 5).

Analyses of the 256 unannotated S. typhimurium
ORFs (=30 amino acids) that have BLASTP matches
to database proteins revealed another problem: the data
banks include many proteins defined by GenBank CDS
annotations solely because there is a region of DNA
with no terminator codons. In an attempt to remove
some of this noise, we dubbed 67 of the 256 ORFs ‘““in-
consistent” and discarded them because they overlap (in
a different frame) by =10 amino acids an annotated
CDS in S typhimurium or a BLASTP match with a
higher significance, admittedly a very superficial treat-
ment. There are certainly additional false proteins

among the 256 (our strategy for finding them was far
from comprehensive), and of the 67 that we called ““in-
consistent,” careful examinations of the data suggest
that 10 or more of them are apt to be rea protein-coding
regions. However, to minimize the introduction of bias
in our evaluations of CRITICA, we chose to apply well-
defined (if somewhat arbitrary and simplistic) criteriain
defining our list of **presumed coding sequences‘—our
standard for measuring accuracy.

The issues raised by the completeness and accuracy
of database annotations are deep and pervasive. Bork
and Bairoch (1996) emphasized that once a sequence
with erroneous annotation is introduced to a public da-
tabase, sequences similar to it will often be assigned
corresponding erroneous properties when they are sub-
mitted to the databases; thus, errors will propagate from
their original source. Even when the original annotation
is subsequently corrected, the secondary errors built
upon it generaly remain. Given this, we stress that a-
though our analyses of CRITICA's accuracy are depen-
dent on database annotations, the method itself only ex-
amines the nucleotides. Thus, CRITICA minimizes the
propagation and perpetuation of annotation errors. Fur-
ther, the lack of dependence on preexisting annotations
makes CRITICA particularly suitable for genome anal-
ysis in phylogenetic groups in which little is known
about the organisms and their genes. Finally, the im-
provement in performance of GenMark when a matrix
based only on the sequence datais used (table 6) implies
that current annotations may actually be a hindrance to
coding prediction schemes.

Returning to the problems involving the 256 ad-
ditional S. typhimurium coding regions suggested by our
BLASTP analysis, our conclusion that there are about
67 erroneous predictions among them might seem seri-
ous. However, this is an artifact of not including the
much larger number of coding regions that were sug-
gested by BLASTP and that are also present in the an-
notations of the S. typhimurium DNA; hence, the ab-
solute frequency of false-positive errors when BLASTP
or BLASTX is used to identify protein-coding sequenc-
es (Gish and States 1993) is low. This potential problem
can be further reduced by incorporating codon bias in-
formation into the evaluation of protein database hits
(States and Gish 1994). A far more serious concern
about relying on BLASTX for coding region identifi-
cation is that truly novel genes (representing new fam-
ilies) cannot be found by searching existing protein da-
tabases.

The design and implementation of CRITICA re-
quired several choices that merit additional comment.
First, in the comparative component of the analysis,
when there were multiple comparative scores of asingle
triplet (due to BLASTN HSPs with different database
sequences), the nonzero scores were averaged. This was
done to avoid multiple counting of what might be a
single evolutionary change to a residue that was inher-
ited by several database sequences. In principle, if it is
known that the nucleotide differences contributing to a
comparative score arose from different evolutionary
events, then the scores could be added. Doing this would



Table 7

Comparison of Different Thresholds for Identifying
Coding Regions in Salmonella typhimurium using
CRITICA

False False Different Total
Threshold  Positives Negatives Frame Error
1x103... 0.0033 0.0110 0.0005 0.0148
1x10*... 0.0029 0.0112 0.0005 0.0146
1x105.. 0.0022 0.0128 0.0005 0.0155
1x10°6... 0.0020 0.0135 0.0005 0.0160

NoTe.—These analyses cover 1,893,616 overlapping triplets. The data re-
ported come from the third iteration of the CRITICA run and are based on the
comparison of CRITICA's analyses with the regions annotated as coding in
GenBank 100 plus the regions believed to be coding via consistent BLASTP
analyses.

make CRITICA more sensitive. Even without making
any assumptions about the histories of the sequences,
there are a variety of circumstances under which this
could be done (e.g., changes to different residues or
changes at different codon positions); needless to say,
adding this ability will require significant additional
bookkeeping in CRITICA.

Another choice made in the current implementation
of CRITICA is the nature of the dicodon table used.
Equation (1) makes the scoring sensitive to the encoded
amino acid sequence, not just to the codon preferences.
This has the effect of making the matrix more sensitive
to proteins of ‘‘canonical’’ composition and amino acid
nearest neighbors, but less sensitive to proteins of un-
usual sequence. This scoring choice could easily be
changed without atering the central components of
CRITICA. However, any coding sequence prediction al-
gorithm that examines codon or dicodon usage will be
potentially misled when a gene with unusual codon bias
is encountered (e.g., genes acquired by recent lateral
transfer or extremely high or low levels of expression).
For Escherichia coli, GenMark matrices optimized for
different amounts of codon bias have been created (Bor-
odovsky et al. 1995). These matrices were based on an
extensive classification of known E. coli coding regions
into three bias categories (Médigue et a. 1991). While
asimilar classification of S typhimurium coding regions
is possible, to the best of our knowledge, it has not been
attempted; for organisms with few known coding re-
gions, it may in fact be impractical or impossible. In
these situations, CRITICA's use of comparative infor-
mation, in addition to dicodon usage, is a distinct ad-
vantage.

In the description of the CRITICA agorithm, sev-
eral thresholds for scores were mentioned. Generally,
these thresholds have been set at levels such that any-
thing that might ultimately be called a coding sequence
is analyzed all the way through to the final significance
test. In the work described above, we set this final
threshold to accept scores with a P value of 104 or less.
This value seems to be close to the optimum for the S
typhimurium data, but substantial changes in the value
have little effect on the overall error rate (table 7). That
is, there seem to be relatively few margina cases. This
has the fortunate consequence that there is no need to
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readjust the threshold for new organisms, which is im-
portant in the analysis of new genomes, for which there
are no annotations with which to assess accuracy and
find an optimal value. In more genera terms, the use of
a Karlin-Altschul P value is a convenient heuristic for
defining a cutoff score; CRITICA does not depend on
the value being a literal probability estimate. In this
vein, we note that the score adjustments for moving the
start and end points are not covered by Karlin-Altschul
statistics. However, when we consider cases with a low
P value (P < 1), the use of log-frequency ratios for
these score adjustments is mathematically equivalent to
calculating a Bayesian posterior probability ratio of non-
coding versus coding, with the Karlin-Altschul P value
as the prior probability and the score adjustments being
the conditional probabilities of observing the new data
given the alternative hypotheses (noncoding or coding).
Regardless of this qualitative argument, our modifica-
tions to the HSS scores are not covered by the maximal-
segment analysis model, and although we refer to the P
value of a score (to avoid introducing an almost cer-
tainly more confusing term), these cannot be interpreted
as literal probabilities of a sequence region being non-
coding.

When analyzing highly novel genomic DNAS, one
of the limiting factors is the ability to find homologs of
the query sequence. We explored two strategies to im-
prove this situation. First, the comparative analysis com-
ponent of CRITICA currently usesBLASTN to find pre-
sumptive homologs. In principle, the same task could be
performed by TBLASTX with added sensitivity for find-
ing homologs in protein-coding regions. Because eval-
uation is based on the relationship between nucleotide
divergence and amino acid divergence, this should in-
crease the available signal (by bringing in more distantly
related homologs) without increasing the false positives.
Although we have carried out preliminary tests of this
strategy, the database search time was prohibitive for
routine use. The second approach that we explored is to
take advantage of the fact that comparisons within a
genome often reveal paralogous genes that contribute to
the comparative analysis. The structure of CRITICA al-
lows comparative analysis data from any number of se-
quence similarity searches to be combined. Thus, the
comparative component of the analysis of a novel ge-
nome can include searches for related sequences in the
public DNA databases, in the genome itself, and in any
other locally available DNA data.

In its present form, most of CRITICA's errors are
due to entirely missing some coding sequences. Specif-
ically, of the total error rate of 0.0146 per triplet eval-
uated (table 6), 0.0088 is due to missing coding regions
(74 regions averaging 78 amino acids), 0.0028 is due to
asserting the existence of unannotated coding regions
(215 regions averaging 72 amino acids), 0.0024 is due
to late start site calls, 0.0001 is due to early start site
calls, and 0.0005 is due to errors that we classified as
different-frame. The systematic tendency to start coding
sequences later than the annotations suggest may be due
in part to the tendency of codon usage to differ in the
early parts of genes (Bulmer 1988), although this re-
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quires further investigation. When GenMark was itera-
tively trained with makemat, the increase in false posi-
tives relative to CRITICA was almost equally distrib-
uted among prediction of additional coding regions (117
regions averaging 65 amino acids) and inclusion of extra
upstream sequences. There was also a small increase in
false negatives due to missing entire coding sequences
(281 regions averaging 62 amino acids). WebGeneMark
was worse than CRITICA in all components of the error,
but most of the increase was due to completely missing
coding regions (281 regions averaging 91 amino acids).

There are several features of CRITICA that would
be particularly fruitful for additional development. One
is incorporation of an improved model for the Shine-
Dalgarno sequence, which is currently very relaxed. Pre-
liminary explorations in this area have shown that many
seemingly reasonable combinations of sequence and
placement of the Shine-Dalgarno sequence are rarely, if
ever, used (unpublished data). A second areafor possible
improvement is the introduction of more sophisticated
scoring of comparative data. In particular, it might be
preferable to assign positive comparative scores to con-
servative amino acid changes. For the moment, this has
not been done because the additional information would
be most evident when analyzing distantly related se-
quences, yet these are not always found by BLASTN.
Thus, a change in the scoring model is best incorporated
in conjunction with the use of a more sensitive search
for homologous sequences. Another productive change
would be the creation of scoring matrices that are not
based on the assumption of equal frequency of codons
in noncoding data (in table 1). This would allow more
sensitive coding region identification in sequences with
a biased G+C content. The treatment of the ends of
regions with coding evidence could be changed to in-
troduce two additional features. An alternative to ad-
justing regions of coding evidence to coincide with ini-
tiator and terminator codons would be to consider pos-
sible frameshifts as well. In a similar manner, one could
permit intron sequences within the coding frame; de-
tecting intron-exon boundaries is an area in which com-
parative analysis could be more fully exploited. This last
feature would be of particularly broad interest and
would share some features with programs including
GRAIL (Uberbacher, Xu, and Mural 1996), GeneParser
(Snyder and Stormo 1995), and the Spliced Alignment
agorithm (Gelfand, Mironov, and Pevzner 1996). The
modular, score-based approach to the design of CRITI-
CA will facilitate the introduction of these and other
features.
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APPENDIX
Derivation of the Comparative Scores

The comparative scores in table 2 are based on a
simple procedure to assign scores for analyzing a given
number of aligned triplets, each of which differ by a
given number of nucleotides. For concreteness, most of
the procedure will be described in the context of infer-
ring the scores for 16 triplets, each of which differs by
one nucleotide. In doing so, we will ignore al other
types of triplets (those differing by zero, two, or three
nucleotides). Similar analyses are performed for triplets
differing by two nucleotides and for triplets differing by
three nucleotides. Also, the multiple hypothesis testing
that is implicit in using maximal-segment analysis is
ignored. These simplifications are permissible, since we
are only using this procedure to arrive at a useful set of
scores; the evaluation of data is based on equation (2).

The first steps in the derivation of the scores are
discussed in the context of figure 2. The plot shows the
number of identical amino acids (m) among n aligned
triplets, each with exactly one nucleotide difference. The
accessible portion of the graph is bounded above by m
= n, the line of complete amino acid identity (----- ).
The lower line (--------- ) is defined by m = np, where
p is the random frequency of amino acid identity for the
given number of nucleotide differences per triplet. From
table 1, we have p = 0.255 for triplets differing by one
nucleotide.

Using maximal-segment analysis to find high-scor-
ing segments and screening the segment scores against
athreshold is equivalent to finding all segments that fall
above a straight line in figure 2; if we can define the
desired line, then we can derive appropriate scores. The



* symbols in figure 2 mark the largest values of m that
are not significantly greater than random (at P >
0.0001), as calculated using the one-tail binomia dis-
tribution for the given values of n and p. Thus, for a
given n, any greater value of m would be considered
significant. The continuous curve (——) approximates
this significance threshold in the vicinity of 16 triplets.
This line is defined by the number of identical amino
acids giving 4.3 standard deviations greater than random
identity according to the normal approximation of the
binomial distribution function. More precisely, the equa-
tion of the line is

m = np + Zo,

where o = Vnp(l — p) and Z = 4.3. Zis an adjustable
parameter whose value was chosen to position the curve
just above the * symbolsin the vicinity of n = 16. Thus,
for a given value of n close to 16, any value of m above
this curve is significant, and there are few, if any, sig-
nificant values of m that are not above the curve. Be-
cause maximal-egment analysis efficiently finds com-
binations of n and m above a straight line, we use the
tangent at n = 16 triplets (- ) as the best straight-
line approximation of the curve. In general, the equation
of the tangent line at n = n, to the curve for Z standard
deviations above random is

m= an + b,
where
Z |/pq
= + - |=
a=p 2y ng
Z
b=§V%m

All points above this line are significant, and in the vi-
cinity of n = 16, few, if any, significant combinations
of n and m are missed. If M is the score assigned to
triplets encoding identical amino acids, then a scoring
scheme based on this tangent line must have a score for
differing amino acids (N) given by

N = a
a—1
Because 0 < a < 1, it followsthat a — 1 < 0, and N
is negative.
All that remains is to choose the magnitude of M
(or N). First, we choose an arhitrary, relatively large
value of M, compute the corresponding value of N, and
then calculate the Karlin and Altschul (1990) parameter
\ for a scoring scheme of only two possible outcomes:
score M with probability p, and score N with probability
1 — p. Up to this point, triplets with one, two, and three
nucleotide differences (for a given ny) have been ana-
lyzed independently; there are three values of M and N,
and the resulting three values of \. Because \ isinverse-
ly proportional to the magnitudes of M and N, it is
straightforward to adjust the magnitudes of the scores
to give approximately equal values of N\, while main-
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taining sufficiently large scores to avoid large round-off
errors when converting M and N to integers. We found
it useful to adjust the scores so that each N = 0.015.
The complete process was performed for ny = 8, 16,
32, 64, and 128, and the resulting values of M and N
are entered in table 2. All subsequent evaluations of
high-scoring segments use only the values of the scores,
they are independent of the calculations of A and any
simplifying assumptions made in this appendix.
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