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Green Evolution and Dynamic
Adaptations Revealed by Genomes of
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Picoeukaryotes are a taxonomically diverse group of organisms less than 2 micrometers in
diameter. Photosynthetic marine picoeukaryotes in the genus Micromonas thrive in ecosystems
ranging from tropical to polar and could serve as sentinel organisms for biogeochemical fluxes of
modern oceans during climate change. These broadly distributed primary producers belong to an
anciently diverged sister clade to land plants. Although Micromonas isolates have high 18S
ribosomal RNA gene identity, we found that genomes from two isolates shared only 90% of their
predicted genes. Their independent evolutionary paths were emphasized by distinct riboswitch
arrangements as well as the discovery of intronic repeat elements in one isolate, and in
metagenomic data, but not in other genomes. Divergence appears to have been facilitated by
selection and acquisition processes that actively shape the repertoire of genes that are mutually
exclusive between the two isolates differently than the core genes. Analyses of the Micromonas
genomes offer valuable insights into ecological differentiation and the dynamic nature
of early plant evolution.

Ancestral green algae were of fundamental
importance to the eukaryotic greening
that shaped the geochemistry of our plan-

et. This process began over a billion years ago
when a cyanobacterium was captured by a het-
erotrophic protist and incorporated as an en-
dosymbiont, giving rise to the first eukaryotic
alga (1). The extant Prasinophytae retain charac-
teristics that are believed to have been present in

the last common ancestor of green algae (chloro-
phytes) and land plants (streptophytes, includ-
ing charophyte algae) (2). Most prasinophytes
within the monophyletic marine order Mamiel-
lales (Fig. 1A and fig. S1), such asMicromonas,
are tiny (≤2 mm in diameter) and known as pico-
eukaryotes.Micromonas is a motile unicell, with
a single chloroplast and mitochondrion (Fig. 1A,
inset), first reported as a dominant phytoplankter

in the 1950s (3) and now recognized as having a
global distribution (Fig. 1B) (4).

Today’s oceans contain a polyphyletic diver-
sity of algae, some with plastids that share
ancestry with land plants (green algae) and oth-
ers (chromalveolates) that are derived from red
algae through secondary or tertiary (eukaryotic-
eukaryotic) endosymbioses (5, 6). Unlike most
episodic chromalveolate bloomers and the fresh-
water green alga Chlamydomonas (7), the
Mamiellales have reduced genomes, as first
shown in Ostreococcus (8, 9). Ostreococcus has
a narrower environmental distribution thanMicro-
monas (Fig. 1B) and a smaller genome (12 to 13
Mb containing only ~8000 genes). Open-ocean
bacteria, including SAR11 and Prochlorococcus
(10, 11), show similar patterns of cell size and
genome minimization. Conditions favoring pico-
phytoplankton growth, such as increased stratifica-
tion, lessmixing, and reduced nutrient concentrations
in ocean surfacewaters, are predicted climate change
outcomes, and thus picoeukaryote dynamics may
be useful ecosystem indicators.

We sequenced the nuclear genomes of Mi-
cromonas isolates RCC299 and CCMP1545
(Table 1 and figs. S2 and S3) (12). These isolates
are from distant ocean provinces and fall into
distinct phylogenetic clades that can co-occur
(Fig. 1) (12, 13) but are generally considered a
single species (Micromonas pusilla). Transmis-
sion electron microscopy revealed no morpho-
logical differences (12), and 18S ribosomal DNA
(rDNA) identity was high (97%). Surprisingly,
only 90% of their 10,056 (RCC299) and 10,575
(CCMP1545) predicted genes (table S1) were
shared (Fig. 2A). In contrast, Ostreococcus
lucimarinus and O. tauri share 97% of cataloged
genes (12), and yeast genera can share ~95% of
homologs (14). The divergence we observed be-
tween the Micromonas isolates supports their
classification as distinct species.

Synteny, GC content, and codon usage pointed
to a shared evolutionary history for RCC299 and
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CCMP1545 but underscored their genomic di-
vergence [supporting online material (SOM) text
S1]. Each genome contained a region that had
14% lower than average GC content, composing
7% (RCC299) and 8% (CCMP1545) of the ge-
nome (figs. S3 and S4), which also had higher
transcriptional activity (SOM text S1). Similar re-
gions in Ostreococcus (8, 9) form smaller genome
proportions. DNA alignment between RCC299
and CCMP1545 low-GC regions was poor, pro-
tein colinearity was absent, and codon usage was
different, in contrast to normal GC chromosomes
(figs. S4 to S6).

Twomajor evolutionary themes emerged from
our analyses. First, the common ancestor of the
Mamiellales had already undergone genomic re-
duction, highlighted by their organellar genomes
(SOM text S2, fig. S7, and tables S2 to S4). Sec-
ond,Micromonas appeared to be less derived than
Ostreococcus, rendering insights into the genetic
composition of the proto-prasinophyte (the com-
mon ancestor of plants and prasinophytes) and
specialization in extant species. Most “core”
nucleus-encoded genes (genes common to the
four Mamiellales genomes) were found to have
known functions (Fig. 2, A and B) in key path-
ways (SOM text S3 to S6, tables S5 to S9, and fig.
S8), such as photosynthesis, and included seleno-

proteins (SOM text S3 and table S10). A sig-
nificant proportion of genes grouped with land
plants (Fig. 2C). Core genes branching with
chromalveolates (mostly diatoms and brown
algae) (Fig. 2C) presumably reflected losses (or
extensive divergence) in other green lineage

organisms and red algae or perhaps horizontal
gene transfer (HGT).

The proto-prasinophyte features we discov-
ered in Micromonas included transcription
factors that probably belong to the “basal green
toolkit” (SOM text S7, figs. S9 to S11, and table
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Fig. 1. Micromonas phylogeny and distribution. (A) A consensus neighbor-joining (NJ) distance
18S rRNA gene tree illustrating the distinct Micromonas clades (12). Bootstrap values represent a
percent of 1000 replicates (NJ), and where provided the second value represents the maximum-
likelihood bootstrap percentages. The genome isolates sequenced in this work are highlighted
(yellow). The previously sequenced Ostreococcus tauri and O. lucimarinus neighbor each other in
clade O_I. The relationship to plants and other photosynthetic lineages is shown in fig S1. (Inset)
Micromonas thin section showing the nucleus (n), chloroplast (c), flagellum (f), and mucronate
extension (the thin tip at the end of the flagellum, indicated by the arrow). (B) Mean sea surface
temperature (SST) for 2006 measured with global high-resolution SST (GHRSST) blended infrared
and microwave SSTs, and locations where Micromonas (solid lines and circles around the isolates
used in this work) and Ostreococcus (dashed lines) 18S rDNA sequences have been recovered.
Micromonas appeared in all temperature regimes.
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S11). For example, early-branching land plants
encode most higher-plant transcription factor fam-
ilies except for the YABBY family (15), which
was therefore posited to be evolutionarily asso-
ciated with the development of leaves. However,
we found YABBY inMicromonas, although it is
absent from Chlamydomonas and Ostreococcus,
indicating that it was part of the basal toolkit (fig.
S11). We also found diversified homeodomains
(fig. S12 and table S12) that are relevant to the
evolution of green regulatory networks.

Although prasinophytes are often considered
asexual, our observations indicated that the
proto-prasinophyte was sexual. First, meiotic-
specific and non-meiotic representatives of the
RECA-RAD51, TOP6A/SPO11, andMUTS gene
families were found (SOM text S5 and table
S13). Second, the low-GC regions showed fea-
tures of sex chromosomes, including RWP-RK

transcription factor family genes (SOM text S7
and table S14). Third, numerous Mamiellales
genes encoded hydroxyproline-rich glycopro-
teins (HRGP) (SOM text S6, table S15, and fig.
S13), which are cell-wall components inChlam-
ydomonas and plants (16). Like the many
carbohydrate-active enzymes (SOM text S6 and
table S17), this was unexpected because cell
walls have not been observed inMicromonas or
Ostreococcus (Fig. 1A, inset) (4). In Chlamy-
domonas, one HRGP gene set is expressed only
after sexual fusion to produce a thick adhesive
zygote wall (17).Micromonasmay behave simi-
larly. Collectively, these data indicate the occur-
rence of sexual differentiation and the formation
of a resistant life-cycle stage.

Fourteen percent of genes were shared
between RCC299 and CCMP1545 but not with
Ostreococcus (Fig. 2, SOM text S3 and S8, table
S18, and fig. S14). Shared enzymes for the syn-
thesis and remodelling of peptidoglycan in the
plastid provided new insight into the evolution-
ary history of the ancestral cyanobacterial endo-
symbiont (SOM text S6) (18, 19). The shared
genes also showed more rapid evolutionary rates
than core genes (fig. S15), indicating that they
escaped constraints acting on the Mamiellales
core but still probably play important roles, given
their presence in both isolates. Moreover, a larger
proportion of “unique” genes (used here to mean
genes mutually exclusive between RCC299 and
CCMP1545) branched with opisthokont or bac-

Table 1. Characteristics of the Micromonas
genomes.

Characteristic CCMP1545 RCC299
Genome size (Mb) 21.9 20.9
G+C (%) 65 64
Number of genes 10,575 10,056
Gene size (bp) 1,557 1,587
Multiexon genes (%) 50 37
Introns (per gene) 0.90 0.57
Intron length (bp) 187 163
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KOG bearing

‘unique’                  shared                    coreBFig. 2. Comparison of
Mamiellales gene com-
plements. (A) Venn dia-
gram comparing RCC299
and CCMP1545, O. tauri
and O. lucimarinus gene
complements. Circle sizes
roughly represent rela-
tive numbers of genes in
each genome. (B) Pro-
portions of genes within
eukaryotic orthologous
groups (KOGs) and with-
out KOG placement for
the gene pools: unique,
genes in one Micromonas species only and not the other Mamiellales (proportions shown are for
RCC299; see fig. S14 for CCMP1545 proportions); shared, genes in both Micromonas species but
neitherOstreococcus species; and core, genes found in the 4Mamiellales genomes. (C) Phylogenomic
profiling for core, shared, and unique genes as a percentage of the gene pool affiliated (≥50%
bootstrap values) with different lineages.

Table 2. Genes with associated TPP riboswitches in RCC299, CCMP1545, and Ostreococcus (both
O. tauri and O. lucimarinus). The position of the riboswitch relative to the gene is indicated in the
columns headed “Riboswitch.” DC, domain containing; NF, not found with protein-protein basic
local alignment search tool (BLASTP) or protein-nucleotide six-frame translation (TBLASTN). See
SOM text S15 for gene descriptions. Protein IDs refer to JGI genome browser protein IDs.

RCC299 CCMP1545 Ostreococcus
Gene
name

Protein
ID

Riboswitch Protein
ID

Riboswitch Presence Riboswitch
5′ 3′ 5′ 3′ 5′ 3′

NMT1 102273 no yes 58387 no no NF - -
FOLR-like 106264 no yes NF - - NF - -
EFG-DC 56895 no yes NF - - NF - -
SSSF-F NF - - 48760 yes yes yes yes no
SSSF-P NF - - 60112 yes yes yes yes no
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terial lineages (Fig. 2C), which is consistent with
acquisition by means of HGT. Many were of
unknown function (Fig. 2B) but may provide
useful indicator information. Following early ge-
nome reduction, fundamentally different selection/
acquisition processes acting on the unique genes
appear to have promoted differentiation.

Marked differences in nutrient transport were
seen as compared with that in other green-lineage
organisms. Between theMicromonas species, 52
of the 59 transporter gene families common to
land plants were present as well as several trans-
porter gene families found in marine chromal-
veolates but not in other green-lineage members

(SOM text S9 and table S19). BothMicromonas
spp. had more transporter families represented
and higher numbers of transporters thanOstreo-
coccus, although CCMP1545 was missing spe-
cific transporter gene families, including some
related to nitrogen uptake (SOM text S9 and table
S19). These differences possibly reflected envi-
ronmental parameters; for instance, RCC299 is
from highly oligotrophic waters, in which nutri-
ent scavenging is essential.

We explored other genomic features related
to competition and mortality that influence com-
munity structure (SOM text S10 to S13 and figs.
S16 to S18). Two types of carbon-concentrating

mechanisms (CCM) were identified (SOM text
S12 and figs. S17 and S18) that can alleviate
CO2 limitation during blooms. The more un-
usual Micromonas CCM, a C4-like carbon fixa-
tion pathway, includes a nicotinamide adenine
dinucleotide phosphate–dependent malic-enzyme
(NADP-ME) that is targeted to the plastid lumen,
an atypical localization that probably reduces
CO2 leakage (SOM text S12). Because C4-like
pathways have now been identified in the four
Mamiellales genomes and in diatoms (SOM text
S12), they may represent a fairly basic neces-
sity rather than a rare form of optimization in a
few taxa. Both Micromonas species appeared
to have more robust defenses against heavy-metal
toxicity and reactive-oxygen species (SOM text
S13 and table S20) thanOstreococcus. The larger
Micromonas genome sizes may thus facilitate
broader physiological response capabilities than
the Ostreococcus genomes.

We found few (CCMP1545) (table S21) or no
(RCC299) recognizably functional transposable
elements (TEs). Most eukaryotes, including
Ostreococcus (9), contain many TEs, and TE
content is positively correlated with genome size
above an ~10Mb threshold (20, 21). Any relic or
degenerate TEs in Micromonas had low simi-
larity to known TEs, and structural features of
class II elements were not found. GC bias was
thought responsible for the high proportion of
TEs in the low-GC regions of Ostreococcus and
for loss of synteny in these regions (9). However,
the low-GC regions of Micromonas, although
rearranged (fig. S5), had few simple repeats, con-

Fig. 3. Depiction of Micromonas
orthologs with and without IEs.
Single-exon (horizontal dark green
bars represent exons) RCC299 [JGI
protein identification (ID) 84234,
chromosome 8] corresponds to a
multi-exon gene in CCMP1545 (JGI
protein ID 70142, scaffold 11).
Different IE elements are shown
(red and orange) within introns
(horizontal light green lines). Di-
agonally oriented green lines show
syntenic relationships by connect-
ing exons with >70% nucleotide
identity [minimum 100 base pairs
(bp)]. Purple (RCC299, reversed
orientation) and blue (CCMP1545)
curves and peaks represent 16-
nucleotide oligomer frequencies.
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between CCMP1545 and Ostreococcus 5′ riboswitches (white profiles) associated with SSSF-P homologs
(blue). Plant riboswitches are often located in 3′UTRs (25), whereas bacterial and fungal riboswitches
are often located in 5′UTRs. CCMP1545 has them in both positions. The downstream gene (purple) is a
putative dihydrouridine synthase conserved in the four Mamiellales genomes. (B) Predicted secondary
structure of FOLR-like–associated riboswitch showing the positions that are conserved among a range of organisms, particularly plants (yellow background),
and a conserved position in all known plant riboswitches but not conserved inMicromonas (pink boxed U). Nucleotides adjacent to P2, P4, and P5 regions
reflect differences in the CCMP1545 SSSF-P 3′ riboswitch (blue) and CCMP1545 SSSF-F 5′ riboswitch (brown). Differences in the more variable P1 and P3 are
not marked in order to maintain the figure’s simplicity.
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tained only potential relic TEs, and showed high
transcriptional activity (theoretically facilitating
TE insertion) (SOM text S1), which suggests TE
activity/propagation is actively hindered.

We discovered intronic repeat sequences in
CCMP1545 that were absent from RCC299 and
other published genomes (SOM text S14, tables
S22 and S23, and figs. S19 to S22). These
abundant introner elements (IEs) were located
within introns, extended nearly to donor and ac-
ceptor sites (Fig. 3 and fig. S21), and lacked
known TE characteristics (22). RCC299 genes
generally had fewer introns than IE-bearing
CCMP1545 homologs (Fig. 3), and CCMP1545
had a higher overall intron frequency (Table 1).
The 9904 IEs fell into four heterogeneously dis-
tributed subfamilies (fig. S22 and table S22),
making up 9% of the genome.We also found IEs
in Sargasso Sea metagenome data (23) that have
flanking coding domains with a high similarity to
CCMP1545 but lower similarity to RCC299.
Micromonas 18S rDNA sequences in the same
metagenome data belong to uncultured clade
M_IV (Fig. 1A) (13). Given the extent of ge-
nome reduction, the abundance of IE suggests
that they are functional or resistant to purging.

Putative RNA interference (RNAi) compo-
nents also differed between theMicromonas spe-
cies (SOM text S4 and table S6). Only RCC299
had an argonaute-encoding gene. A version of
argonaute is also found in Chlamydomonas and
plants but not Ostreococcus. DEAD box and
SDE3 gene analyses provided circumstantial
evidence for a diverged RCC299 RNA helicase.
Argonaute can act to combat TE invasion (24),
which is notable given that RCC299 had no
recognizable TEs or IEs.

BothMicromonas spp. had putative thiamine
pyrophosphate (TPP) riboswitches, untranslated
mRNAs that regulate gene expression by means
of metabolite binding (25, 26). These were not
associated with homologous genes nor with
known thiamine-biosynthesis–related genes, ex-
cept for N-myristoyltransferase 1 (NMT1) (Table
2 and SOM text S15). CCMP1545 riboswitches
were located at both gene ends (Fig. 4A), an ar-
rangement never before seen, and formed two
divergent groups: 5′ riboswitches shared with
Ostreococcus and 3′ riboswitches shared with
RCC299 (Fig. 4B). A conserved 3′ riboswitch
was shared between folate receptor (FOLR)–
like (RCC299) and SSSF-P (CCMP1545), even
though these genes were not held in common; yet
Ostreococcus also had SSSF-P and a 5′ riboswitch
(Fig. 4A). Only one of the seven Micromonas
riboswitches was associated with a multi-exon
gene (FOLR-like). Thus, it appears that the pu-

tative riboswitches in Micromonas act akin to
bacterial riboswitches and lack the spliceosomal
functions that evolved in other eukaryotes (26).

Deficiencies in the thiamine-biosynthesis
pathway (27, 28) were notable (SOM text S15).
However, comparison with other lineages indi-
cated the Micromonas riboswitch-containing
genes represent ancient thiamine-pathway com-
ponents. We identified TPP riboswitches asso-
ciated with SSSF-P in SAR11 bacteria, which
also lack classical thiamine-biosynthesis genes
(10), and with SSSF-F in Chlamydomonas and
Volvox. The functional importance of the gene-
riboswitch associations is supported by the same
gene-riboswitch pairings being found in these
disparate lineages (SOM text S15).

The Micromonas genomes reveal features of
the ancestral algae that initiated the billion-year
trajectory of the green lineage and the greening of
Earth. Their divergence, combined with acqui-
sition strategies that are consistent with HGT,
highlight the dynamic nature of marine protistan
evolution and provide a springboard for un-
raveling functional aspects of phytoplankton
populations. The challenge now is to identify
biogeochemically important features within this
natural diversity and apply them in assessing
ecological transformations caused by environ-
mental change.
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